1 |
Faverani LP, Barão VA, Ramalho-Ferreira G, et al. The influence of bone quality on the biomechanical behavior of full-arch implant-supported fixed prostheses[J]. Mater Sci Eng C Mater Biol Appl, 2014, 37: 164-170.
|
2 |
Niinomi M, Nakai M. Titanium-based biomaterials for preventing stress shielding between implant devices and bone[J]. Int J Biomater, 2011, 2011: 836587.
|
3 |
韩雪莲, 刘宗伟, 李岩涛. 种植牙即刻负重的生物力学的三维有限元分析[J]. 华西口腔医学杂志, 2011, 29(2): 121-124.
|
|
Han XL, Liu ZW, Li YT. Three dimensional finite element analysis of biomechanical distribution of dental implants with immediate loading[J]. West China J Stomatol, 2011, 29(2): 121-124.
|
4 |
姜杨, 俞经虎, 钱善华. 基于离散元的种植体力学性能研究[J]. 计算机仿真, 2022, 39(9): 282-287.
|
|
Jiang Y, Yu JH, Qian SH. Study on physical properties of implant based on discrete element[J]. Comput Simul, 2022, 39(9): 282-287.
|
5 |
张帅, 吕川, 李进红, 等. 基台颈部缓冲层对种植体应力分布影响的三维有限元分析[J]. 华西口腔医学杂志, 2020, 38(5): 537-540.
|
|
Zhang S, Lü C, Li JH, et al. Three-dimensional finite element analysis of the influence of an abutment buffer layer on implant stress distribution[J]. West China J Stomatol, 2020, 38(5): 537-540.
|
6 |
Li X, Wang CT, Wang L, et al. Fabrication of bioactive Titanium with controlled porous structure and cell culture in vitro [J]. Rare Met Mater Eng, 2010, 39(10): 1697-1701.
|
7 |
金柱坤, 李潇, 赵惠, 等. 基于螺旋CT对68例下颌骨的大小及形态学分析[J]. 口腔医学研究, 2013, 29(3): 248-251.
|
|
Jin ZK, Li X, Zhao H, et al. Mandible size and morphology based on spiral CT in 68 patients[J]. J Oral Sci Res, 2013, 29(3): 248-251.
|
8 |
Demenko V, Linetskiy I, Nesvit K, et al. Ultimate masticatory force as a criterion in implant selection[J]. J Dent Res, 2011, 90(10): 1211-1215.
|
9 |
郭猛. 激光选区熔化制备多孔结构种植体及其性能分析[D]. 秦皇岛: 燕山大学, 2021.
|
|
Guo M. Preparation of porous structure implants by selective laser melting and analysis of their properties[D]. Qinhuangdao: Yanshan University, 2021.
|
10 |
Ji SC, Gu Q, Xia B. Porosity dependence of mechanical properties of solid materials[J]. J Mater Sci, 2006, 41(6): 1757-1768.
|
11 |
Maiti SK, Gibson LJ, Ashby MF. Deformation and energy absorption diagrams for cellular solids[J]. Acta Me-tall, 1984, 32(11): 1963-1975.
|
12 |
黄美慧, 姜闻博, 张翕, 等. 牙种植体表面多孔层厚度对骨界面应力分布的影响[J]. 口腔材料器械杂志, 2016, 25(2): 61-65, 85.
|
|
Huang MH, Jiang WB, Zhang X, et al. Effects of the surficial porous layer thickness of dental implants on the stress distribution in peri-implant bone[J]. Chin J Dent Mater Devices, 2016, 25(2): 61-65, 85.
|
13 |
徐伟. 基于SLM梯度多孔钛口腔种植体结构设计及应用基础研究[D]. 北京: 北京科技大学, 2021.
|
|
Xu W. Structural design and application of gradient porous Ti-dental implant based on SLM[D]. Beijing: University of Science and Technology Beijing, 2021.
|
14 |
van Bael S, Chai YC, Truscello S, et al. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds[J]. Acta Biomater, 2012, 8(7): 2824-2834.
|
15 |
Fukuda A, Takemoto M, Saito T, et al. Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting[J]. Acta Biomater, 2011, 7(5): 2327-2336.
|
16 |
Ran QC, Yang WH, Hu Y, et al. Osteogenesis of 3D printed porous Ti6Al4V implants with different pore si-zes[J]. J Mech Behav Biomed Mater, 2018, 84: 1-11.
|
17 |
Bobbert FSL, Zadpoor AA. Effects of bone substitute architecture and surface properties on cell response, angiogenesis, and structure of new bone[J]. J Mater Chem B, 2017, 5(31): 6175-6192.
|
18 |
林野. 当代牙种植体设计进步与临床意义[J]. 华西口腔医学杂志, 2017, 35(1): 18-28.
|
|
Lin Y. Current dental implant design and its clinical importance[J]. West China J Stomatol, 2017, 35(1): 18-28.
|
19 |
Bandyopadhyay A, Mitra I, Avila JD, et al. Porous metal implants: processing, properties, and challenges[J]. Int J Extrem Manuf, 2023, 5(3): 032014.
|
20 |
Zhang YN, Sun N, Zhu MR, et al. The contribution of pore size and porosity of 3D printed porous titanium scaffolds to osteogenesis[J]. Biomater Adv, 2022, 133: 112651.
|
21 |
Zhang ZB, Liu AB, Fan JD, et al. A drug-loaded composite coating to improve osteogenic and antibacterial properties of Zn-1Mg porous scaffolds as biodegradable bone implants[J]. Bioact Mater, 2023, 27: 488-504.
|
22 |
Watanabe R, Takahashi H, Matsugaki A, et al. Novel nano-hydroxyapatite coating of additively manufactured th-ree-dimensional porous implants improves bone ingrow-th and initial fixation[J]. J Biomed Mater Res B Appl Biomater, 2023, 111(2): 453-462.
|