1 |
Li L, Li C, Wang S, et al. Exosomes Derived from hypoxic oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a prometastatic phenotype[J]. Cancer Res, 2016, 76(7): 1770-1780.
|
2 |
Andreucci E, Peppicelli S, Ruzzolini J, et al. The acidic tumor microenvironment drives a stem-like phenotype in melanoma cells[J]. J Mol Med (Berl), 2020, 98(10): 1431-1446.
|
3 |
Estrella V, Chen T, Lloyd M, et al. Acidity generated by the tumor microenvironment drives local invasion[J]. Can-cer Res, 2013, 73(5): 1524-1535.
|
4 |
Brisotto G, Biscontin E, Rossi E, et al. Dysmetabolic circulating tumor cells are prognostic in metastatic breast cancer[J]. Cancers (Basel), 2020, 12(4): 1005.
|
5 |
Shi Q, Le X, Wang B, et al. Regulation of vascular endothelial growth factor expression by acidosis in human cancer cells[J]. Oncogene, 2001, 20(28): 3751-3756.
|
6 |
Glunde K, Guggino SE, Solaiyappan M, et al. Extracellular acidification alters lysosomal trafficking in human breast cancer cells[J]. Neoplasia, 2003, 5(6): 533-545.
|
7 |
宋宇峰, 冯红超, 唐路, 等. 酸性微环境对单核/巨噬细胞分泌血管内皮细胞生长因子及Tca8113细胞杀伤作用的影响[J]. 华西口腔医学杂志, 2010, 28(4): 364-366.
|
|
Song YF, Feng HC, Tang L, et al. Experimental study on the anti-tumor effect of monocytes/macrophages against Tca8113 cells and the secretion of vascular endothelial growth factor in acid microenvironment[J]. West China J Stomatol, 2010, 28(4): 364-366.
|
8 |
Song J, Ge Z, Yang X, et al. Hepatic stellate cells activa-ted by acidic tumor microenvironment promote the metastasis of hepatocellular carcinoma via osteopontin[J]. Cancer Lett, 2015, 356: 713-720.
|
9 |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(8): 394-424.
|
10 |
Dong Y, Tu Y, Wang K, et al. A general strategy for ma-crotheranostic prodrug activation: synergy between the aci-dic tumor microenvironment and bioorthogonal chemistry[J]. Angew Chem Int Ed Engl, 2020, 59(18): 7168-7172.
|
11 |
Voss NCS, Dreyer T, Henningsen MB, et al. Targeting the acidic tumor microenvironment: unexpected pro-neoplastic effects of oral NaHCO3 therapy in murine breast tissue[J]. Cancers (Basel), 2020, 12(4): 891-909.
|
12 |
曹峰琦, 陈翀, 刘妍, 等. 肿瘤pH微环境通过激活β-catenin/TCF4增强人乳腺癌肿瘤细胞的干性[J]. 基础医学与临床, 2014, 34(5): 622-627.
|
|
Cao FQ, Chen C, Liu Y, et al. The tumor pH microenvironment enhance stemness properties via β-catenin/TCF-4 activation in human breast cancer cells[J]. Basic Clin Med, 2014, 34(5): 622-627.
|
13 |
Martin GR, Jain RK. Noninvasive measurement of interstitial pH profiles in normal and neoplastic tissue using fluorescence ratio imaging microscopy[J]. Cancer Res, 1994, 54(21): 5670-5674.
|
14 |
Boedtkjer E, Pedersen SF. The acidic tumor microenvirroment as a driver of cancer[J]. Annu Rev Physiol, 2020, 82: 103-126.
|
15 |
Pertega-Gomes N, Felisbino S, Massie CE, et al. A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: a role for monocarboxylate transporters as metabolic targets for therapy[J]. J Pathol, 2015, 236(4): 517-530.
|
16 |
Stubbs M, McSheehy PM, Griffiths JR, et al. Causes and consequences of tumour acidity and implications for treatment[J]. Mol Med Today, 2000, 6(1): 15-19.
|
17 |
王利伟, 余宇, 陈娇, 等. 蛋白激酶D1对口腔鳞癌细胞在肿瘤微环境中生长代谢的调控[J]. 华西口腔医学杂志, 2019, 37(6): 577-582.
|
|
Wang LW, Yu Y, Chen J, et al. Protein kinase D1 regulates the growth and metabolism of oral squamous carcinoma cells in tumor microenvironment[J].West China J Stomatol, 2019, 37(6): 577-582.
|
18 |
Hamoui N, Peters JH, Schneider S, et al. Increased acid exposure in patients with gastroesophageal reflux disea-se influences cyclooxygenase-2 gene expression in the squamous epithelium of the lower esophagus[J]. Arch Surg, 2004, 139(7): 712-717.
|
19 |
Krysan K, Dalwadi H, Sharma S, et al. Cyclooxygenase 2-dependent expression of survivin is critical for apoptosis resistance in non-small cell lung cancer[J]. Cancer Res, 2004, 64(18): 6359-6362.
|
20 |
Sato A, Mizobuchi Y, Nakajima K, et al. Blocking COX-2 induces apoptosis and inhibits cell proliferation via the Akt/survivin- and Akt/ID3 pathway in low-grade-glioma[J]. J Neurooncol, 2017, 132(2): 231-238.
|
21 |
Haque MA, Sailo BL, Padmavathi G, et al. Nature-inspired development of unnatural meroterpenoids as the non-toxic anti-colon cancer agents[J]. Eur J Med Chem, 2018, 160: 256-265.
|
22 |
Wheatley SP, Mcneish IA. Survivin:a protein with dual roles in mitosis and apoptosis[J]. Int Rev Cytol, 2005, 247: 35-88.
|
23 |
Shariat SF, Ashfaq R, Karakiewicz PI, et al. Survivin expression is associated with bladder cancer presence, sta-ge, progression, and mortality[J]. Cancer, 2007, 109 (6): 1106-1113.
|
24 |
Kim YY, Lee EJ, Kim SM, et al. Anti-cancer effects of celecoxib in head and neck carcinoma[J]. Mol Cells, 2010, 29(2): 185-194.
|