华西口腔医学杂志 ›› 2020, Vol. 38 ›› Issue (5): 583-588.doi: 10.7518/hxkq.2020.05.019
        
               		梅宏翔( ), 陈奕霖, 施培磊, 杨偲睿, 徐欣, 何金枝(
), 陈奕霖, 施培磊, 杨偲睿, 徐欣, 何金枝( )
)
                  
        
        
        
        
    
收稿日期:2019-12-11
									
				
											修回日期:2020-06-02
									
				
									
				
											出版日期:2020-10-01
									
				
											发布日期:2020-10-14
									
			通讯作者:
					何金枝
											E-mail:978604542@qq.com;hejinzhi@scu.edu.cn
												作者简介:梅宏翔,硕士,E-mail:978604542@qq.com
				
							基金资助:
        
               		Mei Hongxiang( ), Chen Yilin, Shi Peilei, Yang Sirui, Xu Xin, He Jinzhi(
), Chen Yilin, Shi Peilei, Yang Sirui, Xu Xin, He Jinzhi( )
)
			  
			
			
			
                
        
    
Received:2019-12-11
									
				
											Revised:2020-06-02
									
				
									
				
											Online:2020-10-01
									
				
											Published:2020-10-14
									
			Contact:
					He Jinzhi   
											E-mail:978604542@qq.com;hejinzhi@scu.edu.cn
												Supported by:摘要:
表观遗传是指非基因序列改变所导致的基因表达水平的稳定改变,微生物能通过表观遗传途径调节宿主炎症,从而逃避或者扩大免疫反应。口腔细菌作为人体微生物的重要组成部分,目前已发现多种表观遗传调控机制可影响宿主对口腔细菌的反应。本文就细菌调控表观遗传的常见途径以及不同疾病中口腔细菌对宿主表观遗传的调控进行综述,以期为口腔疾病中表观遗传相关机制研究提供参考。
中图分类号:
梅宏翔, 陈奕霖, 施培磊, 杨偲睿, 徐欣, 何金枝. 口腔细菌影响宿主表观遗传调控的研究进展[J]. 华西口腔医学杂志, 2020, 38(5): 583-588.
Mei Hongxiang, Chen Yilin, Shi Peilei, Yang Sirui, Xu Xin, He Jinzhi. Advances in oral bacteria influencing host epigenetic regulation[J]. West China Journal of Stomatology, 2020, 38(5): 583-588.
| [1] | Berger SL, Kouzarides T, Shiekhattar R , et al. An operational definition of epigenetics[J]. Genes Dev, 2009,23(7):781-783. doi: 10.1101/gad.1787609 URL pmid: 19339683 | 
| [2] | Grabiec AM, Potempa J . Epigenetic regulation in bacterial infections: targeting histone deacetylases[J]. Crit Rev Microbiol, 2018,44(3):336-350. doi: 10.1080/1040841X.2017.1373063 URL pmid: 28971711 | 
| [3] | Jośko-Ochojska J, Rygiel K, Postek-Stefańska L . Diseases of the oral cavity in light of the newest epigenetic research: possible implications for stomatology[J]. Adv Clin Exp Med, 2019,28(3):397-406. doi: 10.17219/acem/76060 URL pmid: 30277670 | 
| [4] | 熊智, 王连荣, 陈实 . 肠道微生物组与宿主的表观遗传修饰[J]. 微生物学报, 2018,58(11):1916-1925. | 
| Xiong Z, Wang LR, Chen S . Epigenetic regulation role of gut microbiome in host[J]. Acta Microbiol Sin, 2018,58(11):1916-1925. | |
| [5] | 徐欣, 何金枝, 周学东 . 口腔微生物群落在口腔与全身疾病预警中的作用[J]. 华西口腔医学杂志, 2015,33(6):555-560. doi: 10.7518/hxkq.2015.06.001 URL | 
| Xu X, He JZ, Zhou XD . Oral microbiota: a promising predictor of human oral and systemic diseases[J]. West China J Stomatol, 2015,33(6):555-560. | |
| [6] | Zhang YH, Wang X, Li HX , et al. Human oral microbiota and its modulation for oral health[J]. Biomedecine Pharmacother, 2018,99:883-893. | 
| [7] | Rothbart SB, Strahl BD . Interpreting the language of histone and DNA modifications[J]. Biochim Biophys Acta, 2014,1839(8):627-643. doi: 10.1016/j.bbagrm.2014.03.001 URL pmid: 24631868 | 
| [8] | Lebreton A, Lakisic G, Job V , et al. A bacterial protein targets the BAHD1 chromatin complex to stimulate type Ⅲ interferon response[J]. Science, 2011,331(6022):1319-1321. doi: 10.1126/science.1200120 URL | 
| [9] | Bandyopadhaya A, Tsurumi A, Maura D , et al. A quorum-sensing signal promotes host tolerance training through HDAC1-mediated epigenetic reprogramming[J]. Nat Microbiol, 2016,1:16174. doi: 10.1038/nmicrobiol.2016.174 URL pmid: 27694949 | 
| [10] | Bandyopadhaya A, Tsurumi A, Rahme LG . NF-κBp50 and HDAC1 interaction is implicated in the host tolerance to infection mediated by the bacterial quorum sensing signal 2-aminoacetophenone[J]. Front Microbiol, 2017,8:1211. doi: 10.3389/fmicb.2017.01211 URL pmid: 28713342 | 
| [11] | Eskandarian HA, Impens F, Nahori MA , et al. A role for SIRT2-dependent histone H3K18 deacetylation in bacterial infection[J]. Science, 2013,341(6145):1238858. doi: 10.1126/science.1238858 URL pmid: 23908241 | 
| [12] | Rolando M, Gomez-Valero L, Buchrieser C . Bacterial remodelling of the host epigenome: functional role and evolution of effectors methylating host histones[J]. Cell Microbiol, 2015,17(8):1098-1107. doi: 10.1111/cmi.12463 URL pmid: 26031999 | 
| [13] | Rolando M, Sanulli S, Rusniok C , et al. Legionella pneumophila effector RomA uniquely modifies host chromatin to repress gene expression and promote intracellular bacterial replication[J]. Cell Host Microbe, 2013,13(4):395-405. doi: 10.1016/j.chom.2013.03.004 URL | 
| [14] | Singh V, Prakhar P, Rajmani RS , et al. Histone methyltransferase SET8 epigenetically reprograms host immune responses to assist mycobacterial survival[J]. J Infect Dis, 2017,216(4):477-488. doi: 10.1093/infdis/jix322 URL pmid: 28931237 | 
| [15] | Meng H, Cao Y, Qin JZ , et al. DNA methylation, its mediators and genome integrity[J]. Int J Biol Sci, 2015,11(5):604-617. doi: 10.7150/ijbs.11218 URL pmid: 25892967 | 
| [16] | Barros SP, Offenbacher S . Modifiable risk factors in periodontal disease: epigenetic regulation of gene expression in the inflammatory response[J]. Periodontol 2000, 2014,64(1):95-110. doi: 10.1111/prd.12000 URL | 
| [17] | Hur K, Niwa T, Toyoda T , et al. Insufficient role of cell proliferation in aberrant DNA methylation induction and involvement of specific types of inflammation[J]. Carcinogenesis, 2011,32(1):35-41. doi: 10.1093/carcin/bgq219 URL | 
| [18] | Tolg C, Sabha N, Cortese R , et al. Uropathogenic E. coli infection provokes epigenetic downregulation of CDKN2A (p16INK4A) in uroepithelial cells[J]. Lab Invest, 2011,91(6):825-836. doi: 10.1038/labinvest.2010.197 URL | 
| [19] | Sharma G, Upadhyay S, Srilalitha M , et al. The interaction of mycobacterial protein Rv2966c with host chromatin is mediated through non-CpG methylation and histone H3/H4 binding[J]. Nucleic Acids Res, 2015,43(8):3922-3937. doi: 10.1093/nar/gkv261 URL pmid: 25824946 | 
| [20] | Duval M, Cossart P, Lebreton A . Mammalian microRNAs and long noncoding RNAs in the host-bacterial pathogen crosstalk[J]. Semin Cell Dev Biol, 2017,65:11-19. doi: 10.1016/j.semcdb.2016.06.016 URL pmid: 27381344 | 
| [21] | Zhang YM, Noto JM, Hammond CE , et al. Helicobacter pylori-induced posttranscriptional regulation of H-K-ATPase α-subunit gene expression by miRNA[J]. Am J Physiol Gastrointest Liver Physiol, 2014,306(7):G606-G613. doi: 10.1152/ajpgi.00333.2013 URL pmid: 24503769 | 
| [22] | Ni B, Rajaram MV, Lafuse WP , et al. Mycobacterium tuberculosis decreases human macrophage IFN-γ responsiveness through miR-132 and miR-26a[J]. J Immunol, 2014,193(9):4537-4547. doi: 10.4049/jimmunol.1400124 URL pmid: 25252958 | 
| [23] | Aruni AW, Zhang KL, Dou YT , et al. Proteome analysis of coinfection of epithelial cells with Filifactor alocis and Porphyromonas gingivalis shows modulation of pathogen and host regulatory pathways[J]. Infect Immun, 2014,82(8):3261-3274. doi: 10.1128/IAI.01727-14 URL | 
| [24] | Yin L, Chung WO . Epigenetic regulation of human β-defensin 2 and CC chemokine ligand 20 expression in gingival epithelial cells in response to oral bacteria[J]. Mucosal Immunol, 2011,4(4):409-419. doi: 10.1038/mi.2010.83 URL | 
| [25] | Martins MD, Jiao Y, Larsson L , et al. Epigenetic modifications of histones in periodontal disease[J]. J Dent Res, 2016,95(2):215-222. doi: 10.1177/0022034515611876 URL pmid: 26496800 | 
| [26] | Diomede F, Thangavelu SR, Merciaro I , et al. Porphyromonas gingivalis lipopolysaccharide stimulation in human periodontal ligament stem cells: role of epigenetic modifications to the inflammation[J]. Eur J Histochem, 2017,61(3):2826. doi: 10.4081/ejh.2017.2826 URL pmid: 29046054 | 
| [27] | Yu XL, Shahir AM, Sha JF , et al. Short-chain fatty acids from periodontal pathogens suppress histone deacetylases, EZH2, and SUV39H1 to promote Kaposi’s sarcoma-associated herpesvirus replication[J]. J Virol, 2014,88(8):4466-4479. doi: 10.1128/JVI.03326-13 URL | 
| [28] | Imai K, Ochiai K, Okamoto T . Reactivation of latent HIV-1 infection by the periodontopathic bacterium Porphyromonas gingivalis involves histone modification[J]. J Immunol, 2009,182(6):3688-3695. doi: 10.4049/jimmunol.0802906 URL pmid: 19265147 | 
| [29] | Imai K, Inoue H, Tamura M , et al. The periodontal pathogen Porphyromonas gingivalis induces the Epstein-Barr virus lytic switch transactivator ZEBRA by histone modification[J]. Biochimie, 2012,94(3):839-846. doi: 10.1016/j.biochi.2011.12.001 URL | 
| [30] | Corrêa RO, Vieira A, Sernaglia EM , et al. Bacterial short-chain fatty acid metabolites modulate the inflammatory response against infectious bacteria[J]. Cell Microbiol, 2017, 19(7): 10.1111/cmi.12720. doi: 10.1111/cmi.12720 URL pmid: 28070968 | 
| [31] | Chang MC, Chen YJ, Lian YC , et al. Butyrate stimulates histone H3 acetylation, 8-isoprostane production, RANKL expression, and regulated osteoprotegerin expression/secretion in MG-63 osteoblastic cells[J]. Int J Mol Sci, 2018,19(12):E4071. doi: 10.3390/ijms19124071 URL pmid: 30562925 | 
| [32] | Li XT, Lu JX, Teng W , et al. Quantitative evaluation of MMP-9 and TIMP-1 promoter methylation in chronic periodontitis[J]. DNA Cell Biol, 2018,37(3):168-173. doi: 10.1089/dna.2017.3948 URL pmid: 29298087 | 
| [33] | de Camargo Pereira G, Guimarães GN, Planello AC , et al. Porphyromonas gingivalis LPS stimulation downregulates DNMT1, DNMT3a, and JMJD3 gene expression levels in human HaCaT keratinocytes[J]. Clin Oral Investig, 2013,17(4):1279-1285. doi: 10.1007/s00784-012-0816-z URL pmid: 22875665 | 
| [34] | Drury JL, Chung WO . DNA methylation differentially regulates cytokine secretion in gingival epithelia in response to bacterial challenges[J]. Pathog Dis, 2015,73(2):1-6. doi: 10.1111/2049-632X.12208 URL pmid: 25066236 | 
| [35] | Le Sage F, Meilhac O, Gonthier MP . Porphyromonas gingivalis lipopolysaccharide induces pro-inflammatory adipokine secretion and oxidative stress by regulating Toll-like receptor-mediated signaling pathways and redox enzymes in adipocytes[J]. Mol Cell Endocrinol, 2017,446:102-110. doi: 10.1016/j.mce.2017.02.022 URL pmid: 28216438 | 
| [36] | Benakanakere M, Abdolhosseini M, Hosur K , et al. TLR2 promoter hypermethylation creates innate immune dysbiosis[J]. J Dent Res, 2015,94(1):183-191. doi: 10.1177/0022034514557545 URL pmid: 25389002 | 
| [37] | Takai R, Uehara O, Harada F , et al. DNA hypermethylation of extracellular matrix-related genes in human periodontal fibroblasts induced by stimulation for a prolonged period with lipopolysaccharide derived from Porphyromonas gingivalis[J]. J Periodont Res, 2016,51(4):508-517. doi: 10.1111/jre.2016.51.issue-4 URL | 
| [38] | Uehara O, Abiko Y, Saitoh M , et al. Lipopolysaccharide extracted from Porphyromonas gingivalis induces DNA hypermethylation of runt-related transcription factor 2 in human periodontal fibroblasts[J]. J Microbiol Immunol Infect, 2014,47(3):176-181. doi: 10.1016/j.jmii.2012.08.005 URL pmid: 23010540 | 
| [39] | Stoecklin-Wasmer C, Guarnieri P, Celenti R , et al. MicroRNAs and their target genes in gingival tissues[J]. J Dent Res, 2012,91(10):934-940. doi: 10.1177/0022034512456551 URL | 
| [40] | Du AQ, Zhao S, Wan LY , et al. MicroRNA expression profile of human periodontal ligament cells under the influence of Porphyromonas gingivalis LPS[J]. J Cell Mol Med, 2016,20(7):1329-1338. doi: 10.1111/jcmm.12819 URL pmid: 26987780 | 
| [41] | Moffatt CE, Lamont RJ . Porphyromonas gingivalis induction of microRNA-203 expression controls suppressor of cytokine signaling 3 in gingival epithelial cells[J]. Infect Immun, 2011,79(7):2632-2637. doi: 10.1128/IAI.00082-11 URL | 
| [42] | Ouhara K, Savitri IJ, Fujita T , et al. miR-584 expressed in human gingival epithelial cells is induced by Porphyromonas gingivalis stimulation and regulates interleukin-8 production via lactoferrin receptor[J]. J Periodontol, 2014,85(6):e198-e204. doi: 10.1902/jop.2013.130335 URL pmid: 24228808 | 
| [43] | Benakanakere MR, Li QY, Eskan MA , et al. Modulation of TLR2 protein expression by miR-105 in human oral keratinocytes[J]. J Biol Chem, 2009,284(34):23107-23115. doi: 10.1074/jbc.M109.013862 URL pmid: 19509287 | 
| [44] | Holla S, Balaji KN . Epigenetics and miRNA during bacteria-induced host immune responses[J]. Epigenomics, 2015,7(7):1197-1212. doi: 10.2217/epi.15.75 URL pmid: 26585338 | 
| [45] | Hui TQ, Peng A, Zhao Y , et al. EZH2, a potential regulator of dental pulp inflammation and regeneration[J]. J Endod, 2014,40(8):1132-1138. doi: 10.1016/j.joen.2014.01.031 URL pmid: 25069920 | 
| [46] | Xu J, Yu B, Hong C , et al. KDM6B epigenetically regulates odontogenic differentiation of dental mesenchymal stem cells[J]. Int J Oral Sci, 2013,5(4):200-205. doi: 10.1038/ijos.2013.77 URL | 
| [47] | Cardoso FP, Viana MB, Sobrinho AP , et al. Methylation pattern of the IFN-gamma gene in human dental pulp[J]. J Endod, 2010,36(4):642-646. doi: 10.1016/j.joen.2009.12.017 URL pmid: 20307737 | 
| [48] | Hahn CL, Best AM, Tew JG . Cytokine induction by Streptococcus mutans and pulpal pathogenesis[J]. Infect Immun, 2000,68(12):6785-6789. doi: 10.1128/iai.68.12.6785-6789.2000 URL pmid: 11083796 | 
| [49] | Wang XX, Feng ZH, Li QM , et al. DNA methylcytosine dioxygenase ten-eleven translocation 2 enhances lipopolysaccharide-induced cytokine expression in human dental pulp cells by regulating MyD88 hydroxymethylation[J]. Cell Tissue Res, 2018,373(2):477-485. doi: 10.1007/s00441-018-2826-x URL pmid: 29654353 | 
| [50] | Zhong S, Zhang SP, Bair E , et al. Differential expression of microRNAs in normal and inflamed human pulps[J]. J Endod, 2012,38(6):746-752. doi: 10.1016/j.joen.2012.02.020 URL pmid: 22595106 | 
| [1] | 高永强, 施鹏伟, 师文楷, 刘一鸣. 长链非编码RNA HCG22在口腔鳞状细胞癌中的表达及作用机制研究[J]. 华西口腔医学杂志, 2021, 39(6): 658-666. | 
| [2] | 付汉斌, 罗琳. HOX反义基因间RNA在唾液腺腺样囊性癌组织中的表达及对预后的影响[J]. 华西口腔医学杂志, 2020, 38(5): 509-512. | 
| [3] | 翁旭, 李劲松, 范松. 长链非编码RNA PCGEM1通过转化生长因子β2/Smad2信号通路调控口腔鳞状细胞癌侵袭和转移的机制研究[J]. 华西口腔医学杂志, 2020, 38(5): 550-557. | 
| [4] | 温佳慧, 吴燕岷, 陈莉丽. 非编码RNA在人牙周膜来源细胞成骨分化中的作用[J]. 华西口腔医学杂志, 2020, 38(3): 330-337. | 
| [5] | 耿玉东,王树斌,卢泰青,滕薇. 长链非编码RNA肌动蛋白纤维相关蛋白1-反义RNA1在口腔鳞状细胞癌中的表达及其相关功能[J]. 华西口腔医学杂志, 2019, 37(6): 594-601. | 
| [6] | 赵军方,查治安,谢卫红,王海斌,李新明,孙强,孙明磊. 长链非编码RNA H19对口腔癌细胞的迁移和侵袭的影响以及分子机制[J]. 华西口腔医学杂志, 2019, 37(4): 378-383. | 
| [7] | 王忠朝, 范丽苑, 谭丹, 周骢, 罗世君. Zeste基因增强子人类同源物2抑制剂GSK343调节巨噬细胞分化的作用[J]. 华西口腔医学杂志, 2017, 35(3): 264-268. | 
| [8] | 申玉 杨璞 郝晋 经典 唐舸 赵志河. DNA甲基化在调节干细胞成骨分化中的作用[J]. 华西口腔医学杂志, 2016, 34(5): 526-530. | 
| [9] | 邹静,周学东,李少敏. 婴儿口腔早期定植菌群的一年动态观察[J]. 华西口腔医学杂志, 2004, 22(02): 126-128. | 
| [10] | 张萍,朱硃,肖晓蓉,张玉,周松华. 口腔细菌终末代谢酸的反相梯度高效液相色谱法分析条件研究[J]. 华西口腔医学杂志, 2002, 20(02): 101-103. | 
| [11] | 张萍,叶利民,肖晓蓉,朱硃,张玉. 短链脂肪酸的梯度高效液相色谱法分析研究[J]. 华西口腔医学杂志, 2001, 19(05): 294-295. | 
| [12] | 黄毅!610041,赵云凤!610041,肖晓蓉!610041,雷莉!610041,张萍!61004. 全菌蛋白SDS-PAGE技术鉴别口腔细菌分型的研究[J]. , 1997, 15(01): 0-. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||