华西口腔医学杂志 ›› 2020, Vol. 38 ›› Issue (5): 576-582.doi: 10.7518/hxkq.2020.05.018
罗瑜雪(), 孙蔓琳, 施培磊, 刘盼, 陈艺尹, 彭显(
)
收稿日期:
2019-12-01
修回日期:
2020-06-04
出版日期:
2020-10-01
发布日期:
2020-10-14
通讯作者:
彭显
E-mail:2015151642073@stu.scu.edu.cn;pengx@scu.edu.cn
作者简介:
罗瑜雪,硕士,E-mail:2015151642073@stu.scu.edu.cn
基金资助:
Luo Yuxue(), Sun Manlin, Shi Peilei, Liu Pan, Chen Yiyin, Peng Xian(
)
Received:
2019-12-01
Revised:
2020-06-04
Online:
2020-10-01
Published:
2020-10-14
Contact:
Peng Xian
E-mail:2015151642073@stu.scu.edu.cn;pengx@scu.edu.cn
Supported by:
摘要:
韦荣球菌是口腔生物膜的早期定植菌之一,高丰度分布于口腔微生态中。目前在口腔中已检出7种韦荣球菌,其在不同部位、不同患者口腔中存在分布差异。近年来研究发现,韦荣球菌与口腔疾病的关系密切,韦荣球菌有助于变异链球菌的黏附且能分解链球菌代谢产生的乳酸,是被公认的致龋因素之一;韦荣球菌为牙龈卟啉单胞菌提供黏附位点,并可通过促进免疫反应参与牙周病的发生发展;韦荣球菌脂多糖的致病性及代谢产生H2S也与牙髓及根尖周病、口臭等相关。韦荣球菌与疾病的相关性已有研究进行阐释,与相关致病菌的作用机制也有一定进展,但其影响口腔疾病发生发展的分子机制仍不明确,本文就韦荣球菌与龋病、牙周病等口腔感染性疾病的研究进展作一综述。
中图分类号:
罗瑜雪, 孙蔓琳, 施培磊, 刘盼, 陈艺尹, 彭显. 韦荣球菌与口腔疾病的研究进展[J]. 华西口腔医学杂志, 2020, 38(5): 576-582.
Luo Yuxue, Sun Manlin, Shi Peilei, Liu Pan, Chen Yiyin, Peng Xian. Research progress in the relationship between Veillonella and oral diseases[J]. West China Journal of Stomatology, 2020, 38(5): 576-582.
[1] |
Costalonga M, Herzberg MC . The oral microbiome and the immunobiology of periodontal disease and caries[J]. Immunol Lett, 2014,162(2 Pt A):22-38.
doi: 10.1016/j.imlet.2014.08.017 URL pmid: 25447398 |
[2] |
Byun R, Carlier JP, Jacques NA , et al. Veillonella denticariosi sp. nov., isolated from human carious dentine[J]. Int J Syst Evol Microbiol, 2007,57(Pt 12):2844-2848.
doi: 10.1099/ijs.0.65096-0 URL pmid: 18048736 |
[3] |
Mashima I, Liao YC, Miyakawa H , et al. Veillonella infantium sp. nov., an anaerobic, Gram-stain-negative coccus isolated from tongue biofilm of a Thai child[J]. Int J Syst Evol Microbiol, 2018,68(4):1101-1106.
doi: 10.1099/ijsem.0.002632 URL pmid: 29458564 |
[4] |
Arif N, Do T, Byun R , et al. Veillonella rogosae sp. nov., an anaerobic, Gram-negative coccus isolated from dental plaque[J]. Int J Syst Evol Microbiol, 2008,58(Pt 3):581-584.
doi: 10.1099/ijs.0.65093-0 URL pmid: 18319459 |
[5] |
Mashima I, Kamaguchi A, Miyakawa H , et al. Veillonella tobetsuensis sp. nov., an anaerobic, gram-negative coccus isolated from human tongue biofilms[J]. Int J Syst Evol Microbiol, 2013,63(Pt 4):1443-1449.
doi: 10.1099/ijs.0.042515-0 URL pmid: 22843723 |
[6] |
Aujoulat F, Bouvet P, Jumas-Bilak E , et al. Veillonella seminalis sp. nov., a novel anaerobic Gram-stain-negative coccus from human clinical samples, and emended description of the genus Veillonella[J]. Int J Syst Evol Microbiol, 2014,64(Pt 10):3526-3531.
doi: 10.1099/ijs.0.064451-0 URL pmid: 25052396 |
[7] |
Mashima I, Djais AA, Haase EM , et al. Establishment of a species-specific primer pair for detecting Veillonella infantium based on the 70 kDa heat shock protein gene dnaK[J]. Anaerobe, 2018,52:79-82.
doi: 10.1016/j.anaerobe.2018.06.004 URL pmid: 29902516 |
[8] |
Doel JJ, Benjamin N, Hector MP , et al. Evaluation of bacterial nitrate reduction in the human oral cavity[J]. Eur J Oral Sci, 2005,113(1):14-19.
doi: 10.1111/j.1600-0722.2004.00184.x URL pmid: 15693824 |
[9] |
Mashima I, Theodorea CF, Thaweboon B , et al. Identification of Veillonella species in the tongue biofilm by using a novel one-step polymerase chain reaction method[J]. PLoS One, 2016,11(6):e0157516.
doi: 10.1371/journal.pone.0157516 URL pmid: 27326455 |
[10] |
Kanasi E, Dewhirst FE, Chalmers NI , et al. Clonal analysis of the microbiota of severe early childhood caries[J]. Caries Res, 2010,44(5):485-497.
doi: 10.1159/000320158 URL pmid: 20861633 |
[11] | Mashima I, Fujita M, Nakatsuka Y , et al, The distribution and frequency of oral Veillonella spp. associated with chronic periodontitis[J]. Int J Curr Microbiol App Sci, 2015,4(3):150-160. |
[12] |
Al-Ahmad A, Roth D, Wolkewitz M , et al. Change in diet and oral hygiene over an 8-week period: effects on oral health and oral biofilm[J]. Clin Oral Investig, 2010,14(4):391-396.
doi: 10.1007/s00784-009-0318-9 URL pmid: 19626350 |
[13] |
Stahringer SS, Clemente JC, Corley RP , et al. Nurture trumps nature in a longitudinal survey of salivary bacterial communities in twins from early adolescence to early adulthood[J]. Genome Res, 2012,22(11):2146-2152.
doi: 10.1101/gr.140608.112 URL |
[14] |
Mitsui T, Saito M, Harasawa R . Salivary nitrate-nitrite conversion capacity after nitrate ingestion and incidence of Veillonella spp. in elderly individuals[J]. J Oral Sci, 2018,60(3):405-410.
doi: 10.2334/josnusd.17-0337 URL pmid: 30101819 |
[15] |
Mashima I, Nakazawa F . The influence of oral Veillonella species on biofilms formed by Streptococcus species[J]. Anaerobe, 2014,28:54-61.
doi: 10.1016/j.anaerobe.2014.05.003 URL |
[16] |
Do T, Sheehy EC, Mulli T , et al. Transcriptomic analysis of three Veillonella spp. present in carious dentine and in the saliva of caries-free individuals[J]. Front Cell Infect Microbiol, 2015,5:25.
doi: 10.3389/fcimb.2015.00025 URL pmid: 25859434 |
[17] |
Zhang M, Chen YX, Xie LZ , et al. Pyrosequencing of plaque microflora in twin children with discordant caries phenotypes[J]. PLoS One, 2015,10(11):e0141310.
doi: 10.1371/journal.pone.0141310 URL pmid: 26524687 |
[18] |
Belstrøm D, Fiehn NE, Nielsen CH , et al. Altered bacterial profiles in saliva from adults with caries lesions: a case-cohort study[J]. Caries Res, 2014,48(5):368-375.
doi: 10.1159/000357502 URL |
[19] |
Thomas RZ, Zijnge V, Ciçek A , et al. Shifts in the microbial population in relation to in situ caries progression[J]. Caries Res, 2012,46(5):427-431.
doi: 10.1159/000339482 URL |
[20] |
Jiang S, Gao XL, Jin LJ , et al. Salivary microbiome diversity in caries-free and caries-affected children[J]. Int J Mol Sci, 2016,17(12):E1978.
doi: 10.3390/ijms17121978 URL pmid: 27898021 |
[21] |
Tanner AC, Mathney JM, Kent RL , et al. Cultivable anaerobic microbiota of severe early childhood caries[J]. J Clin Microbiol, 2011,49(4):1464-1474.
doi: 10.1128/JCM.02427-10 URL |
[22] |
Mishiro T, Oka K, Kuroki Y , et al. Oral microbiome alterations of healthy volunteers with proton pump inhibitor[J]. J Gastroenterol Hepatol, 2018,33(5):1059-1066.
doi: 10.1111/jgh.14040 URL pmid: 29105152 |
[23] |
Guggenheim M, Shapiro S, Gmür R , et al. Spatial arrangements and associative behavior of species in an in vitro oral biofilm model[J]. Appl Environ Microbiol, 2001,67(3):1343-1350.
doi: 10.1128/AEM.67.3.1343-1350.2001 URL pmid: 11229930 |
[24] |
Kara D, Luppens SB, van Marle J, et al. Microstructural differences between single-species and dual-species biofilms of Streptococcus mutans and Veillonella parvula, before and after exposure to chlorhexidine[J]. FEMS Microbiol Lett, 2007,271(1):90-97.
doi: 10.1111/j.1574-6968.2007.00701.x URL pmid: 17403046 |
[25] |
Chalmers NI, Palmer RJ Jr, Cisar JO , et al. Characterization of a Streptococcus sp.-Veillonella sp. community micromanipulated from dental plaque[J]. J Bacteriol, 2008,190(24):8145-8154.
doi: 10.1128/JB.00983-08 URL pmid: 18805978 |
[26] |
Thurnheer T, Belibasakis GN . Streptococcus oralis maintains homeostasis in oral biofilms by antagonizing the cariogenic pathogen Streptococcus mutans[J]. Mol Oral Microbiol, 2018,33(3):234-239.
doi: 10.1111/omi.12216 URL pmid: 29327482 |
[27] |
Liu JM, Wu CG, Huang IH , et al. Differential response of Streptococcus mutans towards friend and foe in mixed-species cultures[J]. Microbiology (Reading, Engl), 2011,157(Pt 9):2433-2444.
doi: 10.1099/mic.0.048314-0 URL |
[28] |
Luppens SB, Kara D, Bandounas L , et al. Effect of Veillonella parvula on the antimicrobial resistance and gene expression of Streptococcus mutans grown in a dual-species biofilm[J]. Oral Microbiol Immunol, 2008,23(3):183-189.
doi: 10.1111/j.1399-302X.2007.00409.x URL pmid: 18402603 |
[29] |
Zhou P, Li XL, Huang IH , et al. Veillonella catalase protects the growth of Fusobacterium nucleatum in microaerophilic and Streptococcus gordonii-resident environments[J]. Appl Environ Microbiol, 2017,83(19):e01079-e01017.
doi: 10.1128/AEM.01079-17 URL pmid: 28778894 |
[30] |
Burleigh MC, Liddle L, Monaghan C , et al. Salivary nitrite production is elevated in individuals with a higher abundance of oral nitrate-reducing bacteria[J]. Free Radic Biol Med, 2018,120:80-88.
doi: 10.1016/j.freeradbiomed.2018.03.023 URL pmid: 29550328 |
[31] |
Doel JJ, Hector MP, Amirtham CV , et al. Protective effect of salivary nitrate and microbial nitrate reductase activity against caries[J]. Eur J Oral Sci, 2004,112(5):424-428.
doi: 10.1111/j.1600-0722.2004.00153.x URL pmid: 15458501 |
[32] |
Hughes CV, Andersen RN, Kolenbrander PE . Characterization of Veillonella atypica PK1910 adhesin-mediated coaggregation with oral Streptococcus spp[J]. Infect Immun, 1992,60(3):1178-1186.
doi: 10.1128/IAI.60.3.1178-1186.1992 URL pmid: 1541534 |
[33] |
Zhou P, Liu JM, Li XL , et al. The sialic acid binding protein, Hsa, in Streptococcus gordonii DL1 also mediates intergeneric coaggregation with Veillonella species[J]. PLoS One, 2015,10(11):e0143898.
doi: 10.1371/journal.pone.0143898 URL pmid: 26606595 |
[34] |
Zhou P, Liu JM, Merritt J , et al. A YadA-like autotransporter, Hag1 in Veillonella atypica is a multivalent hemagglutinin involved in adherence to oral streptococci, Porphyromonas gingivalis, and human oral buccal cells[J]. Mol Oral Microbiol, 2015,30(4):269-279.
doi: 10.1111/omi.12091 URL pmid: 25440509 |
[35] |
Mashima I, Miyakawa H, Scannapieco FA , et al. Identification of an early stage biofilm inhibitor from Veillonella tobetsuensis[J]. Anaerobe, 2018,52:86-91.
doi: 10.1016/j.anaerobe.2018.06.005 URL pmid: 29908228 |
[36] |
Egland PG, Palmer RJ Jr, Kolenbrander PE . Interspecies communication in Streptococcus gordonii-Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition[J]. Proc Natl Acad Sci USA, 2004,101(48):16917-16922.
doi: 10.1073/pnas.0407457101 URL pmid: 15546975 |
[37] |
Johnson BP, Jensen BJ, Ransom EM , et al. Interspecies signaling between Veillonella atypica and Streptococcus gordonii requires the transcription factor CcpA[J]. J Bacteriol, 2009,191(17):5563-5565.
doi: 10.1128/JB.01226-08 URL pmid: 19542285 |
[38] |
Wei YP, Shi M, Zhen M , et al. Comparison of subgingival and buccal mucosa microbiome in chronic and aggressive periodontitis: a pilot study[J]. Front Cell Infect Microbiol, 2019,9:53.
doi: 10.3389/fcimb.2019.00053 URL pmid: 30915280 |
[39] |
Roberts HM, Ling MR, Insall R , et al. Impaired neutrophil directional chemotactic accuracy in chronic periodontitis patients[J]. J Clin Periodontol, 2015,42(1):1-11.
doi: 10.1111/jcpe.12326 URL pmid: 25360483 |
[40] |
Ebersole JL, Steffen MJ, Thomas MV , et al. Smoking-related cotinine levels and host responses in chronic periodontitis[J]. J Periodont Res, 2014,49(5):642-651.
doi: 10.1111/jre.2014.49.issue-5 URL |
[41] |
Hirschfeld J, White PC, Milward MR , et al. Modulation of neutrophil extracellular trap and reactive oxygen species release by periodontal bacteria[J]. Infect Immun, 2017,85(12):e00297-e00217.
doi: 10.1128/IAI.00297-17 URL pmid: 28947649 |
[42] |
Ji S, Kim Y, Min BM , et al. Innate immune responses of gingival epithelial cells to nonperiodontopathic and periodontopathic bacteria[J]. J Periodont Res, 2007,42(6):503-510.
doi: 10.1111/jre.2007.42.issue-6 URL |
[43] |
Papapanou PN, Neiderud AM, Papadimitriou A , et al. “Checkerboard” assessments of periodontal microbiota and serum antibody responses: a case-control study[J]. J Periodontol, 2000,71(6):885-897.
doi: 10.1902/jop.2000.71.6.885 URL pmid: 10914791 |
[44] |
Xiao L, Ornatowska M, Zhao GQ , et al. Lipopolysaccharide-induced expression of microsomal prostaglandin E synthase-1 mediates late-phase PGE2 production in bone marrow derived macrophages[J]. PLoS One, 2012,7(11):e50244.
doi: 10.1371/journal.pone.0050244 URL pmid: 23226252 |
[45] |
Tribble GD, Lamont RJ . Bacterial invasion of epithelial cells and spreading in periodontal tissue[J]. Periodontol 2000, 2010,52(1):68-83.
doi: 10.1111/j.1600-0757.2009.00323.x URL pmid: 20017796 |
[46] |
Periasamy S, Kolenbrander PE . Central role of the early colonizer Veillonella sp. in establishing multispecies biofilm communities with initial, middle, and late colonizers of enamel[J]. J Bacteriol, 2010,192(12):2965-2972.
doi: 10.1128/JB.01631-09 URL pmid: 20154130 |
[47] |
Hughes CV, Kolenbrander PE, Andersen RN , et al. Coaggregation properties of human oral Veillonella spp.: relationship to colonization site and oral ecology[J]. Appl Environ Microbiol, 1988,54(8):1957-1963.
doi: 10.1128/AEM.54.8.1957-1963.1988 URL pmid: 3178207 |
[48] |
Eke PI, Rotimi VO, Laughon BE . Coaggregation of black-pigmented Bacteroides species with other oral bacteria[J]. J Med Microbiol, 1989,28(1):1-4.
doi: 10.1099/00222615-28-1-1 URL pmid: 2913312 |
[49] |
Park J, Shokeen B, Haake SK , et al. Characterization of Fusobacterium nucleatum ATCC 23726 adhesins involved in strain-specific attachment to Porphyromonas gingivalis[J]. Int J Oral Sci, 2016,8(3):138-144.
doi: 10.1038/ijos.2016.27 URL |
[50] |
Zhou P, Li XL, Qi FX . Identification and characterization of a haem biosynjournal locus in Veillonella[J]. Microbiology, 2016,162(10):1735-1743.
doi: 10.1099/mic.0.000366 URL pmid: 27566661 |
[51] |
Rodrigues RM, Gonçalves C, Souto R , et al. Antibiotic resistance profile of the subgingival microbiota following systemic or local tetracycline therapy[J]. J Clin Periodontol, 2004,31(6):420-427.
doi: 10.1111/j.1600-051X.2004.00493.x URL pmid: 15142209 |
[52] |
Pourhajibagher M, Raoofian R, Ghorbanzadeh R , et al. An experimental study for rapid detection and quantification of endodontic microbiota following photo-activated disinfection via new multiplex real-time PCR assay[J]. Photodiagnosis Photodyn Ther, 2018,21:344-350.
doi: 10.1016/j.pdpdt.2018.01.006 URL pmid: 29337224 |
[53] |
Matera G, Liberto MC, Berlinghieri MC , et al. Biological effects of Veillonella parvula and Bacteroides intermedius lipopolysaccharides[J]. Microbiologica, 1991,14(4):315-323.
URL pmid: 1775087 |
[54] |
Nagashima Y . Immunobiological activities of Veillonella parvula isolated from infected root canals[J]. Kanagawa Shigaku, 1990,25(2):209-220.
URL pmid: 2134271 |
[55] |
Matera G, Muto V, Vinci M , et al. Receptor recognition of and immune intracellular pathways for Veillonella parvula lipopolysaccharide[J]. Clin Vaccine Immunol, 2009,16(12):1804-1809.
doi: 10.1128/CVI.00310-09 URL pmid: 19828771 |
[56] |
Ramotar K, Conly JM, Chubb H , et al. Production of menaquinones by intestinal anaerobes[J]. J Infect Dis, 1984,150(2):213-218.
doi: 10.1093/infdis/150.2.213 URL pmid: 6470528 |
[57] |
ter Steeg PF, van der Hoeven JS . Growth stimulation of Treponema denticola by periodontal microorganisms[J]. Antonie Van Leeuwenhoek, 1990,57(2):63-70.
doi: 10.1007/BF00403156 URL pmid: 2321929 |
[58] |
Washio J, Sato T, Koseki T , et al. Hydrogen sulfide-producing bacteria in tongue biofilm and their relationship with oral malodour[J]. J Med Microbiol, 2005,54(Pt 9):889-895.
doi: 10.1099/jmm.0.46118-0 URL pmid: 16091443 |
[59] |
Washio J, Shimada Y, Yamada M , et al. Effects of pH and lactate on hydrogen sulfide production by oral Veillonella spp[J]. Appl Environ Microbiol, 2014,80(14):4184-4188.
doi: 10.1128/AEM.00606-14 URL pmid: 24795374 |
[60] |
Konings WN, Boonstra J, De Vries W . Amino acid transport in membrane vesicles of obligately anaerobic Veillonella alcalescens[J]. J Bacteriol, 1975,122(1):245-249.
doi: 10.1128/JB.122.1.245-249.1975 URL pmid: 164433 |
[61] |
Liu JM, Merritt J, Qi FX. Genetic transformation of Veillonella parvula[J]. FEMS Microbiol Lett, 2011, 322(2): 138- 144.
doi: 10.1111/j.1574-6968.2011.02344.x URL |
[62] |
Liu JM, Xie ZJ, Merritt J , et al. Establishment of a tractable genetic transformation system in Veillonella spp[J]. Appl Environ Microbiol, 2012,78(9):3488-3491.
doi: 10.1128/AEM.00196-12 URL pmid: 22344660 |
[63] |
Zhou P, Xie G, Li XL , et al. Complete genome sequence of Veillonella atypica OK5, the first transformable strain in the species[J]. Genome Announc, 2017,5(22):e00391-e00317.
doi: 10.1128/genomeA.00391-17 URL pmid: 28572307 |
[64] |
Zhou P, Li XL, Qi FX . Establishment of a counter-selectable markerless mutagenesis system in Veillonella atypica[J]. J Microbiol Methods, 2015,112:70-72.
doi: 10.1016/j.mimet.2015.03.010 URL pmid: 25771833 |
[65] |
Knapp S, Brodal C, Peterson J , et al. Natural competence is common among clinical isolates of Veillonella parvula and is useful for genetic manipulation of this key member of the oral microbiome[J]. Front Cell Infect Microbiol, 2017,7:139.
doi: 10.3389/fcimb.2017.00139 URL pmid: 28473967 |
[1] | 孙雁斐, 卢洁, 杨加震, 刘育含, 刘璐, 曾飞, 牛玉芬, 董磊, 杨芳. 基于微生物组新颖指数构建龋病菌群诊断模型[J]. 华西口腔医学杂志, 2023, 41(2): 208-217. |
[2] | 张琼, 汪俊, 夏斌, 赵玮, 陈旭, 蒋备战, 黄洋, 吴礼安, 袁国华, 邹静. 低龄儿童龋的临床管理专家共识[J]. 华西口腔医学杂志, 2022, 40(5): 495-503. |
[3] | 廖盛楠, 吕炜桐, 唐权, 马玗玟, 刘力嘉, 王亮, 彭显. 选择性雌激素受体调节剂抑制变异链球菌的作用探究[J]. 华西口腔医学杂志, 2022, 40(2): 218-224. |
[4] | 李审绥, 吴沉洲, 李龙江. 光动力疗法治疗口腔疾病的研究进展[J]. 华西口腔医学杂志, 2021, 39(2): 215-220. |
[5] | 张佳丽, 姚军, 仁青措姆, 许元泓. 西藏昌都市3~5岁儿童龋病及其影响因素调查分析[J]. 华西口腔医学杂志, 2021, 39(1): 53-57. |
[6] | 秦丹,姜浩丰,沈露,张彩,柴召午,王金华. 重庆市10~12岁儿童第一恒磨牙患龋情况及相关因素分析[J]. 华西口腔医学杂志, 2019, 37(6): 608-614. |
[7] | 许提提,曾利伟,闻健琼,万莉,欧晓艳. 江西省5 387名12~14岁青少年错畸形流行病学调查分析[J]. 华西口腔医学杂志, 2019, 37(5): 541-546. |
[8] | 郝渝,彭显,周学东,程磊. 牙周病与常见恶性肿瘤关系的研究进展[J]. 华西口腔医学杂志, 2019, 37(3): 320-324. |
[9] | 欧晓艳,曾艺旋,闻健琼,周尹,曾利伟. 江西省3~5岁儿童对口腔卫生服务需求与就诊利用的现状及对策[J]. 华西口腔医学杂志, 2018, 36(6): 650-655. |
[10] | 王小竞. 微创美容技术在儿童口腔治疗中的应用[J]. 华西口腔医学杂志, 2018, 36(4): 349-354. |
[11] | 马瑞, 彭显, 徐屹, 段丁瑜. 唾液蛋白质糖基化及其与全身和口腔疾病关系的研究进展[J]. 华西口腔医学杂志, 2018, 36(3): 336-341. |
[12] | 陈婧, 程磊, 周学东, 彭显. 龋病微生物因素研究进展[J]. 华西口腔医学杂志, 2018, 36(1): 104-108. |
[13] | 吴万红, 叶畅畅, 黄萍. 牙周病与早产低体重儿的关系及其机制的研究进展[J]. 华西口腔医学杂志, 2017, 35(5): 527-532. |
[14] | 郑黎薇, 邹静, 游泳, 赵玉梅, 刘鹤, 梅予锋, 赵玮, 段小红. 孕期口腔疾病管理[J]. 华西口腔医学杂志, 2017, 35(2): 113-118. |
[15] | 魏习, 胡波, 彭海洋, 刘畅, 宋锦璘, 唐明. 血液透析患者龋病和牙周健康状况的系统评价[J]. 华西口腔医学杂志, 2017, 35(2): 155-161. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||