[1] |
Zhai QM, Dong ZW, Wang W, et al. Dental stem cell and dental tissue regeneration[J]. Front Med, 2019, 13(2): 152-159.
|
[2] |
Sato T, Fukuzawa Y, Kawakami S, et al. The onset of dental erosion caused by food and drinks and the preventive effect of alkaline ionized water[J]. Nutrients, 2021, 13(10): 3440.
|
[3] |
Carvalho TS, Lussi A. Age-related morphological, histological and functional changes in teeth[J]. J Oral Rehabilitation, 2017, 44(4): 291-298.
|
[4] |
Zhang LY, Fang ZH, Li QL, et al. A tooth-binding antimicrobial peptide to prevent the formation of dental biofilm[J]. J Mater Sci Mater Med, 2019, 30(4): 45.
|
[5] |
de Paula Zago LH, de Annunzio SR, de Oliveira KT, et al. Antimicrobial photodynamic therapy against metronidazole-resistant dental plaque bactéria[J]. J Photochem Photobiol B, 2020, 209: 111903.
|
[6] |
West NX, Joiner A. Enamel mineral loss[J]. J Dent, 2014, 42: S2-S11.
|
[7] |
Amaya Arbeláez MI, de Paula e Silva ACA, Navegante G, et al. Proto-oncogenes and cell cycle gene expression in normal and neoplastic oral epithelial cells stimulated with soluble factors from single and dual biofilms of Candida albicans and Staphylococcus aureus [J]. Front Cell Infect Microbiol, 2021, 11: 627043.
|
[8] |
Altalhi AM, AlNajdi LN, Al-Harbi SG, et al. Laser therapy versus traditional scaling and root planing: a comparative review[J]. Cureus, 2024, 16(6): e61997.
|
[9] |
Vinel A, Al Halabi A, Roumi S, et al. Non-surgical pe-riodontal treatment: SRP and innovative therapeutic approaches[M]//Advances in Experimental Medicine and Biology. Cham: Springer International Publishing, 2022: 303-327.
|
[10] |
Haridy MF, Ahmed HS, Kataia MM, et al. Fracture resistance of root canal-treated molars restored with ceramic overlays with/without different resin composite base materials: an in vitro study[J]. Odontology, 2022, 110(3): 497-507.
|
[11] |
Primus C, Gutmann JL, Tay FR, et al. Calcium silicate and calcium aluminate cements for dentistry reviewed[J]. J Am Ceram Soc, 2022, 105(3): 1841-1863.
|
[12] |
Janini ACP, Bombarda GF, Pelepenko LE, et al. Antimicrobial activity of calcium silicate-based dental mate-rials: a literature review[J]. Antibiotics, 2021, 10(7): 865.
|
[13] |
刘学申. 人牙釉质酸蚀损伤的相关影响因素研究[D]. 成都: 西南交通大学, 2012.
|
|
Liu XS. Study on the erosion behavior and factors of human tooth enamel[D]. Chengdu: Southwest Jiaotong University, 2012.
|
[14] |
Diba MN, Goudouri OM, Tapia F, et al. Magnesium-containing bioactive polycrystalline silicate-based ceramics and glass-ceramics for biomedical applications[J]. Curr Opin Solid State Mater Sci, 2014, 18(3): 147-167.
|
[15] |
Zadehnajar P, Mirmusavi MH, Eil Bakhtiari SS, et al. Recent advances on akermanite calcium-silicate ceramic for biomedical applications[J]. Int J Appl Ceram Technol, 2021, 18(6): 1901-1920.
|
[16] |
Li XK, Wang JF, Joiner A, et al. The remineralisation of enamel: a review of the literature[J]. J Dent, 2014, 42: S12-S20.
|
[17] |
Hornby K, Ricketts SR, Philpotts CJ, et al. Enhanced enamel benefits from a novel toothpaste and dual phase gel containing calcium silicate and sodium phosphate salts[J]. J Dent, 2014, 42: S39-S45.
|
[18] |
孙岳魁, 冯希平, 王进防, 等. 一种新型牙膏的形成牙釉矿物质机理研究[J]. 口腔护理用品工业, 2017, 27(3): 17-23.
|
|
Sun YK, Feng XP, Wang JF, et al. Research on the formation mechanism of mineral glaze of a new type of toothpaste[J]. Toothpaste Indust, 2017, 27(3): 17-23.
|
[19] |
Liu H, Xing F, Zhou YX, et al. Nanomaterials-based photothermal therapies for antibacterial applications[J]. Mater Des, 2023, 233: 112231.
|
[20] |
Li CW, Cheng Y, Li DW, et al. Antitumor applications of photothermal agents and photothermal synergistic therapies[J]. Int J Mol Sci, 2022, 23(14): 7909.
|
[21] |
Dash SR, Kundu CN. Photothermal therapy: a new approach to eradicate cancer[J]. Curr Nanosci, 2022, 18(1): 31-47.
|
[22] |
Ren X, Hao RX, Yang YQ, et al. A facile and green stra-tegy to achieve metallized woven carbon fiber through the triple roles of dopamine in in situ thermal reduction of Ag[J]. Compos Commun, 2023, 40: 101585.
|
[23] |
Shi X, Zheng H, Kannan AM, et al. Effect of thermally induced oxygen vacancy of α-MnO2 nanorods toward oxygen reduction reaction[J]. Inorg Chem, 2019, 58(8): 5335-5344.
|
[24] |
唐洁吟, 王刚, 刘聪, 等. 微纳米生物活性玻璃诱导牙本质再矿化研究[J]. 无机材料学报, 2022, 37(4): 436-444.
|
|
Tang JY, Wang G, Liu C, et al. Dentin remineralization induced by micro-nano bioactive glass spheres[J]. J Inorgan Mater, 2022, 37(4): 436-444.
|
[25] |
Memarpour M, Shafiei F, Rafiee A, et al. Effect of hydroxyapatite nanoparticles on enamel remineralization and estimation of fissure sealant bond strength to remineralized tooth surfaces: an in vitro study[J]. BMC Oral Heal, 2019, 19: 92.
|
[26] |
Wu J, Qin N, Bao DH. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration[J]. Nano Energy, 2018, 45: 44-51.
|
[27] |
Ernst B, Setayesh T, Nersesyan A, et al. Investigations concerning the impact of consumption of hot beverages on acute cytotoxic and genotoxic effects in oral mucosa cells[J]. Sci Rep, 2021, 11: 23014.
|
[28] |
Liang KN, Gao Y, Li JS, et al. Effective dentinal tubule occlusion induced by polyhydroxy-terminated PAMAM dendrimer in vitro [J]. RSC Adv, 2014, 4(82): 43496-43503.
|
[29] |
Xu Z, Neoh KG, Kishen A. A biomimetic strategy to form calcium phosphate crystals on type I collagen substrate[J]. Mater Sci Eng C, 2010, 30(6): 822-826.
|
[30] |
Kim C, Lim YJ, Kim YE, et al. An efficient method for the selective syntheses of sodium telluride and symmetrical diorganyl tellurides and the investigation of reaction pathways[J]. Molecules, 2024, 29(22): 5398.
|
[31] |
Pang XL, Feng QG, Qiu TY, et al. Defective TiO2 prepared via synchronous crystallization and constraint reduction strategy with enhanced photocatalytic activity[J]. Mater Electron, 2021, 32: 20327-20341.
|
[32] |
Li YX, Zhou GL, Yin JZ, et al. Aboundent oxygen defects in CoFe-LDH derivatives for enhanced photo-thermal synergistic catalytic hydrogen production from Na-BH4[J]. Int J Hydrog Energ, 2023, 22: 16745-16755.
|
[33] |
Zhang YQ, Han WJ, Ding LL, et al. Insight into the re-gulation between crystallinity and oxygen vacancies of BiVO4 affecting the photocatalytic oxygen evolution activity[J]. Catal Sci Technol, 2022, 12: 4040-4049.
|
[34] |
Kang ZH, Lin EZ, Qin N, et al. Effect of oxygen vacancies and crystal symmetry on piezocatalytic properties of Bi2WO6 ferroelectric nanosheets for wastewater decontamination[J]. Environ Sci Nano, 2021, 8(5): 1376-1388.
|
[35] |
Kumari rajendran R, Aggarwal D, Bonvalet Rolland M, et al. Design and development of large-diameter Mg-Zn-Ca bulk metallic glass for biomedical applications: a mechanical and corrosion perspective[J]. Intermetallics, 2024, 175: 108520.
|
[36] |
Gupta SK, Modak B, Das D, et al. Light harvesting from oxygen vacancies and A- and B-site dopants in CaSnO3 perovskite through efficient photon utilization and local site engineering[J]. ACS Appl Electron Mater, 2021, 3(7): 3256-3270.
|
[37] |
Bi X, Du GH, Kalam A, et al. Tuning oxygen vacancy content in TiO2 nanoparticles to enhance the photocatalytic performance[J]. Chem Eng Sci, 2021, 234: 116440.
|
[38] |
Zhang GQ, Jiang WS, Hua SX, et al. Constructing bulk defective perovskite SrTiO3 nanocubes for high performance photocatalysts[J]. Nanoscale, 2016, 8(38): 16963-16968.
|
[39] |
Lin YK, Chen RS, Chou TC, et al. Thickness-dependent binding energy shift in few-layer MoS2 grown by che-mical vapor deposition[J]. ACS Appl Mater Interfaces, 2016, 8(34): 22637-22646.
|
[40] |
Kumar A, Kumar M, Navakoteswara Rao V, et al. Unra-veling the structural and morphological stability of oxygen vacancy engineered leaf-templated CaTiO3 towards photocatalytic H2 evolution and N2 fixation reactions[J]. J Mater Chem A, 2021, 9(31): 17006-17018.
|
[41] |
Xu H, Yan CL, Li RZ, et al. Synergetic modulation of surface alkali and oxygen vacancy over SrTiO3 for the CO2 photodissociation[J]. Nanotechnology, 2022, 33(8): 085401.
|
[42] |
Feng S, Wang T, Liu B, et al. Enriched surface oxygen vacancies of photoanodes by photoetching with enhan-ced charge separation[J]. Angew Chem, 2020, 132(5): 2060-2064.
|
[43] |
Yang JS, Li BX. First-principles study of Ga7As7 ionic cluster and influence of multi-charge on its structure[J]. Chin Phys B, 2010, 19(9): 097103.
|
[44] |
Cai JM, Cao A, Huang JJ, et al. Understanding oxygen vacancies in disorder-engineered surface and subsurface of CaTiO3 nanosheets on photocatalytic hydrogen evolution[J]. Appl Catal B Environ, 2020, 267: 118378.
|
[45] |
Mesoudy AE, MacHon D, Ruediger A, et al. Band gap narrowing induced by oxygen vacancies in reactively sputtered TiO2 thin films[J]. Thin Solid Films, 2023, 769: 139737.
|
[46] |
Li JJ, Cai SC, Yu EQ, et al. Efficient infrared light promoted degradation of volatile organic compounds over photo-thermal responsive Pt-rGO-TiO2 composites[J]. Appl Catal B Environ, 2018, 233: 260-271.
|
[47] |
Wang YF, Barhoumi A, Tong R, et al. BaTiO3-core Au-shell nanoparticles for photothermal therapy and bimodal imaging[J]. Acta Biomater, 2018, 72: 287-294.
|
[48] |
Dai L, Fu P, Chen JM, et al. Nitrogen doping mediated oxygen vacancy and Ti valence regulation to enhance photocatalytic H2 generation[J]. Int J Hydrog Energy, 2023, 48(67): 26187-26199.
|
[49] |
Tan HQ, Zhao Z, Zhu WB, et al. Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO3 [J]. ACS Appl Mater Interfaces, 2014, 6(21): 19184-19190.
|
[50] |
Yang J, Wu PF, Weng YL, et al. Rational design and antimicrobial potency assessment of abaecin analogues[J]. ACS Biomater Sci Eng, 2023, 9(12): 6698-6714.
|
[51] |
Wang XQ, Wang YF, Wang K, et al. Bifunctional antica-ries peptides with antibacterial and remineralizing effects[J]. Oral Dis, 2019, 25(2): 488-496.
|
[52] |
Li JF, Ma LL, Li ZY, et al. Oxygen vacancies-rich heterojunction of Ti3C2/BiOBr for photo-excited antibacterial textiles[J]. Small, 2022, 18(5): 202104448.
|
[53] |
Hu T, Lan D, Wang J, et al. Construction of NiCo2O4/NiCoO2 co-embedded porous bio-carbon with rich heterogeneous interfaces for excellent bacteriostatic microwave radiation protection[J]. Carbon, 2025, 232: 119798.
|
[54] |
Jiang Y, Li J, Zeng Z, et al. Organic photodynamic nanoinhibitor for synergistic cancer therapy[J]. Angew Chem Int Ed Engl, 2019, 58(24): 8161-8165.
|
[55] |
Sarna-Boś K, Skic K, Boguta P, et al. Elemental mapping of human teeth enamel, dentine and cementum in view of their microstructure[J]. Micron, 2023, 172: 103485.
|
[56] |
Davidson CL, Hoekstra IS, Arends J. Microhardness of sound, decalcified and etched tooth enamel related to the calcium content[J]. Caries Res, 1974, 8(2): 135-144.
|