| 1 | Chen F, Wang D. Novel technologies for the prevention and treatment of dental caries: a patent survey[J]. Expert Opin Ther Pat, 2010, 20(5): 681-694. | 
																													
																						| 2 | Takahashi N, Nyvad B. The role of bacteria in the caries process: ecological perspectives[J]. J Dent Res, 2011, 90(3): 294-303. | 
																													
																						| 3 | Burne RA, Marquis RE. Alkali production by oral bacteria and protection against dental caries[J]. FEMS Microbiol Lett, 2000, 193(1): 1-6. | 
																													
																						| 4 | Koo H, Xiao J, Klein MI, et al. Exopolysaccharides produced by Streptococcus mutans glucosyltransferases mo-dulate the establishment of microcolonies within multis-pecies biofilms[J]. J Bacteriol, 2010, 192(12): 3024-3032. | 
																													
																						| 5 | Ge Y, Caufield PW, Fisch GS, et al. Streptococcus mutans and Streptococcus sanguinis colonization correlated with caries experience in children[J]. Caries Res, 2008, 42(6): 444-448. | 
																													
																						| 6 | Sullivan R, Santarpia P, Lavender S, et al. Clinical efficacy of a specifically targeted antimicrobial peptide mouth rinse: targeted elimination of Streptococcus mutans and prevention of demineralization[J]. Caries Res, 2011, 45(5): 415-428. | 
																													
																						| 7 | Liu Y, Wang L, Zhou X, et al. Effect of the antimicrobial decapeptide KSL on the growth of oral pathogens and Streptococcus mutans biofilm[J]. Int J Antimicrob Agents, 2011, 37(1): 33-38. | 
																													
																						| 8 | Shang DJ, Liang H, Wei S, et al. Effects of antimicrobial peptide L-K6, a temporin-1CEb analog on oral pathogen growth, Streptococcus mutans biofilm formation, and anti-inflammatory activity[J]. Appl Microbiol Biotechnol, 2014, 98(20): 8685-8695. | 
																													
																						| 9 | Ding Y, Wang W, Fan M, et al. Antimicrobial and anti-biofilm effect of Bac8c on major bacteria associated with dental caries and Streptococcus mutans biofilms[J]. Peptides, 2014, 52: 61-67. | 
																													
																						| 10 | Wang Y, Fan Y, Zhou Z, et al. De novo synthetic short antimicrobial peptides against cariogenic bacteria[J]. Arch Oral Biol, 2017, 80: 41-50. | 
																													
																						| 11 | Tu H, Fan Y, Lv X, et al. Activity of synthetic antimicrobial peptide GH12 against oral streptococci[J]. Caries Res, 2016, 50(1): 48-61. | 
																													
																						| 12 | Wang Y, Wang X, Jiang W, et al. Antimicrobial peptide GH12 suppresses cariogenic virulence factors of Streptococcus mutans[J]. J Oral Microbiol, 2018, 10(1): 1442089. | 
																													
																						| 13 | Zhang K, Wang S, Zhou X, et al. Effect of antibacterial dental adhesive on multispecies biofilms formation[J]. J Dent Res, 2015, 94(4): 622-629. | 
																													
																						| 14 | Weber K, Delben J, Bromage TG, et al. Comparison of SEM and VPSEM imaging techniques with respect to Streptococcus mutans biofilm topography[J]. FEMS Microbiol Lett, 2014, 350(2): 175-179. | 
																													
																						| 15 | Zheng X, Zhang K, Zhou X, et al. Involvement of gshAB in the interspecies competition within oral biofilm[J]. J Dent Res, 2013, 92(9): 819-824. | 
																													
																						| 16 | He J, Hwang G, Liu Y, et al. L-arginine modifies the exopolysaccharide matrix and thwarts Streptococcus mutans outgrowth within mixed-species oral biofilms[J]. J Bacteriol, 2016, 198(19): 2651-2661. | 
																													
																						| 17 | Bowen WH, Koo H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms[J]. Caries Res, 2011, 45(1): 69-86. | 
																													
																						| 18 | Xiao J, Klein MI, Falsetta ML, et al. The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm[J]. PLoS Pathog, 2012, 8(4): e1002623. | 
																													
																						| 19 | Zheng LY, Itzek A, Chen ZY, et al. Oxygen dependent pyruvate oxidase expression and production in Streptococcus sanguinis[J]. Int J Oral Sci, 2011, 3(2): 82-89. | 
																													
																						| 20 | Wade WG, Aldred MJ, Walker DM. An improved medium for isolation of Streptococcus mutans[J]. J Med Micro-biol, 1986, 22(4): 319-323. | 
																													
																						| 21 | Polak D, Shany-Kdoshim S, Zaydel L, et al. High-resolution novel method for tracking bacteria in a multi-species biofilm[J]. Arch Microbiol, 2019, 201(2): 259-266. | 
																													
																						| 22 | Li MY, Huang RJ, Zhou XD, et al. Role of sortase in Streptococcus mutans under the effect of nicotine[J]. Int J Oral Sci, 2013, 5(4): 206-211. |