华西口腔医学杂志 ›› 2019, Vol. 37 ›› Issue (6): 671-676.doi: 10.7518/hxkq.2019.06.018
收稿日期:2019-03-20
									
				
											修回日期:2019-06-24
									
				
									
				
											出版日期:2019-12-01
									
				
											发布日期:2019-11-27
									
			通讯作者:
					邹玲
											E-mail:zouling@scu.edu.cn
												基金资助:
        
               		Deng Ling1(
),Xue Jing2,Jiang Li3,Zou Ling2(
),Li Wei1
			  
			
			
			
                
        
    
Received:2019-03-20
									
				
											Revised:2019-06-24
									
				
									
				
											Online:2019-12-01
									
				
											Published:2019-11-27
									
			Contact:
					Ling Zou   
											E-mail:zouling@scu.edu.cn
												Supported by:摘要:
越来越多的微生物组研究使人们能够更好地理解拮抗和协同的微生物相互作用是如何影响疾病结果的。白色念珠菌是人类口腔微生态系常见的机会性病原体。在健康口腔环境中白色念珠菌具有明显影响口腔细菌生态系与宿主之间平衡的潜力,从而导致口腔疾病的发生、发展。本文对白色念珠菌与口腔主要常见致病菌交互作用的研究进行综述,以期更好地理解口腔感染性疾病的本质。
中图分类号:
邓凌,薛晶,蒋丽,邹玲,李伟. 白色念珠菌与口腔常见致病菌交互作用的研究进展[J]. 华西口腔医学杂志, 2019, 37(6): 671-676.
Deng Ling,Xue Jing,Jiang Li,Zou Ling,Li Wei. Research progress on interactions between Candida albicans and common oral pathogens[J]. West China Journal of Stomatology, 2019, 37(6): 671-676.
| [1] |  
											  Falsetta ML, Koo H . Beyond mucosal infection: a role for C. albicans-Streptococcal interactions in the pathogenesis of dental caries[J]. Curr Oral Health Rep, 2014,1(1):86-93. 
											 												 doi: 10.1007/s40496-013-0011-6 URL  | 
										
| [2] |  
											  Metwalli KH, Khan SA, Krom BP , et al. Streptococcus mutans, Candida albicans, and the human mouth: a sticky situation[J]. PLoS Pathog, 2013,9(10):e1003616. 
											 												 doi: 10.1371/journal.ppat.1003616 URL pmid: 24146611  | 
										
| [3] |  
											  McLean RJ . Normal bacterial flora may inhibit Candida albicans biofilm formation by autoinducer-2[J]. Front Cell Infect Microbiol, 2014,4:117-118. 
											 												 doi: 10.3389/fcimb.2014.00117 URL pmid: 25221750  | 
										
| [4] |  
											  Bandara HM, Cheung BP, Watt RM , et al. Pseudomonas aeruginosa lipopolysaccharide inhibits Candida albicans hyphae formation and alters gene expression during biofilm development[J]. Mol Oral Microbiol, 2013,28(1):54-69. 
											 												 doi: 10.1111/omi.12006 URL  | 
										
| [5] |  
											  Peters BM, Ovchinnikova ES, Krom BP , et al. Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p[J]. Microbiology, 2012,158(Pt 12):2975-2986. 
											 												 doi: 10.1099/mic.0.062109-0 URL pmid: 22918893  | 
										
| [6] |  
											  O’Donnell LE, Millhouse E, Sherry L , et al. Polymicrobial Candida biofilms: friends and foe in the oral cavity[J]. FEMS Yeast Res, 2015,15(7):fov077. 
											 												 doi: 10.1093/femsyr/fov077 URL pmid: 26298018  | 
										
| [7] |  
											  Krom BP, Kidwai S, Ten Cate JM . Candida and other fungal species: forgotten players of healthy oral microbiota[J]. J Dent Res, 2014,93(5):445-451. 
											 												 doi: 10.1177/0022034514521814 URL  | 
										
| [8] |  
											  Fragkou S, Balasouli C, Tsuzukibashi O , et al. Streptococcus mutans, Streptococcus sobrinus and Candida albicans in oral samples from caries-free and caries-active children[J]. Eur Arch Paediatr Dent, 2016,17(5):367-375. 
											 												 doi: 10.1007/s40368-016-0239-7 URL  | 
										
| [9] |  
											  Falsetta ML, Klein MI, Colonne PM , et al. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo[J]. Infect Immun, 2014,82(5):1968-1981. 
											 												 doi: 10.1128/IAI.00087-14 URL  | 
										
| [10] |  
											  Hwang G, Liu Y, Kim D , et al. Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo[J]. PLoS Pathog, 2017,13(6):e1006407. 
											 												 doi: 10.1371/journal.ppat.1006407 URL pmid: 28617874  | 
										
| [11] |  
											  Sztajer H, Szafranski SP, Tomasch J , et al. Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans[J]. ISME J, 2014,8(11):2256-2271. 
											 												 doi: 10.1038/ismej.2014.73 URL  | 
										
| [12] |  
											  Hwang G, Marsh G, Gao L , et al. Binding force dynamics of Streptococcus mutans-glucosyltransferase B to Candida albicans[J]. J Dent Res, 2015,94(9):1310-1317. 
											 												 doi: 10.1177/0022034515592859 URL pmid: 26138722  | 
										
| [13] | Yang C, Scoffield J, Wu R , et al. Antigen Ⅰ/Ⅱ mediates interactions between Streptococcus mutans and Candida albicans[J]. Moloral Microbio, 2018,33(4):283-291. | 
| [14] |  
											  Willems HM, Kos K, Jabra-Rizk MA , et al. Candida albicans in oral biofilms could prevent caries[J]. Pathog Dis, 2016, 74(5): ftw039. 
											 												 doi: 10.1093/femspd/ftz063 URL pmid: 31702775  | 
										
| [15] |  
											  Barbosa JO, Rossoni RD, Vilela SF , et al. Streptococcus mutans can modulate biofilm formation and attenuate the virulence of Candida albicans[J]. PLoS One, 2016,11(3):e0150457. 
											 												 doi: 10.1371/journal.pone.0150457 URL pmid: 26934196  | 
										
| [16] |  
											  Shimazu K, Oguchi R, Takahashi Y , et al. Effects of surface reaction-type pre-reacted glass ionomer on oral biofilm formation of Streptococcus gordonii[J]. Odontology, 2016,104(3):310-317. 
											 												 doi: 10.1007/s10266-015-0217-2 URL pmid: 26319990  | 
										
| [17] |  
											  Dutton LC, Paszkiewicz KH, Silverman RJ , et al. Transcriptional landscape of trans-kingdom communication between Candida albicans and Streptococcus gordonii[J]. Mol Oral Microbiol, 2016,31(2):136-161. 
											 												 doi: 10.1111/omi.12111 URL pmid: 26042999  | 
										
| [18] |  
											  Ma SL, Ge W, Yan YF , et al. Effects of Streptococcus sanguinis bacteriocin on deformation, adhesion ability, and young’s modulus of Candida albicans[J]. Biomed Res Int, 2017,2017:5291486. 
											 												 doi: 10.1155/2017/5291486 URL pmid: 28612025  | 
										
| [19] |  
											  Jesionowski AM, Mansfield JM, Brittan JL , et al. Transcriptome analysis of Streptococcus gordonii Challis DL1 indicates a role for the biofilm-associated fruRBA operon in response to Candida albicans[J]. Mol Oral Microbiol, 2016,31(4):314-328. 
											 												 doi: 10.1111/omi.12125 URL pmid: 26280461  | 
										
| [20] |  
											  Bamford CV, d’Mello A, Nobbs AH , et al. Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication[J]. Infect Immun, 2009,77(9):3696-3704. 
											 												 doi: 10.1128/IAI.00438-09 URL pmid: 19528215  | 
										
| [21] |  
											  Xu H, Sobue T, Thompson A , et al. Streptococcal co-infection augments Candida pathogenicity by amplifying the mucosal inflammatory response[J]. Cell Microbiol, 2014,16(2):214-231. 
											 												 doi: 10.1111/cmi.12216 URL  | 
										
| [22] |  
											  Xu HB, Sobue T, Bertolini M , et al. Streptococcus oralis and Candida albicans synergistically activate μ-calpain to degrade E-cadherin from oral epithelial junctions[J]. J Infect Dis, 2016,214(6):925-934. 
											 												 doi: 10.1093/infdis/jiw201 URL pmid: 27190184  | 
										
| [23] |  
											  Cavalcanti IM, Nobbs AH, Ricomini-Filho AP , et al. Interkingdom cooperation between Candida albicans, Streptococcus oralis and Actinomyces oris modulates early biofilm development on denture material[J]. Pathog Dis, 2016,74(3):1-8. 
											 												 doi: 10.1093/femspd/ftw002 URL pmid: 26755532  | 
										
| [24] |  
											  Guo YQ, Wei CL, Liu CX , et al. Inhibitory effects of oral Actinomyces on the proliferation, virulence and biofilm formation of Candida albicans[J]. Arch Oral Biol, 2015,60(9):1368-1374. 
											 												 doi: 10.1016/j.archoralbio.2015.06.015 URL pmid: 26143096  | 
										
| [25] |  
											  Cavalcanti IM, del Bel Cury AA, Jenkinson HF , et al. Interactions between Streptococcus oralis, Actinomyces oris, and Candida albicans in the development of multispecies oral microbial biofilms on salivary pellicle[J]. Mol Oral Microbiol, 2017,32(1):60-73. 
											 												 doi: 10.1111/omi.12154 URL pmid: 26834007  | 
										
| [26] |  
											  Rybalchenko OV, Bondarenko VM, Orlova OG , et al. Inhibitory effects of Lactobacillus fermentum on microbial growth and biofilm formation[J]. Arch Microbiol, 2015,197(8):1027-1032. 
											 												 doi: 10.1007/s00203-015-1140-1 URL pmid: 26267163  | 
										
| [27] |  
											  Matsubara VH, Wang Y, Bandara HM , et al. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation[J]. Appl Microbiol Biotechnol, 2016,100(14):6415-6426. 
											 												 doi: 10.1007/s00253-016-7527-3 URL pmid: 27087525  | 
										
| [28] |  
											  Jiang QR, Stamatova I, Kainulainen V , et al. Interactions between Lactobacillus rhamnosus GG and oral micro-organisms in an in vitro biofilm model[J]. BMC Microbiol, 2016,16(1):149-160. 
											 												 doi: 10.1186/s12866-016-0759-7 URL pmid: 27405227  | 
										
| [29] |  
											  Ovchinnikova ES, Krom BP, Harapanahalli AK , et al. Surface thermodynamic and adhesion force evaluation of the role of chitin-binding protein in the physical interaction between Pseudomonas aeruginosa and Candida albicans[J]. Langmuir, 2013,29(15):4823-4829. 
											 												 doi: 10.1021/la400554g URL pmid: 23509956  | 
										
| [30] |  
											  Morales DK, Grahl N, Okegbe C , et al. Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines[J]. mBio, 2013,4(1):e00526. 
											 												 doi: 10.1128/mBio.00526-12 URL pmid: 23362320  | 
										
| [31] |  
											  Reen FJ, Phelan JP, Gallagher L , et al. Exploiting interkingdom interactions for development of small-molecule inhibitors of Candida albicans biofilm formation[J]. Antimicrob Agent Chemother, 2016,60(10):5894-5905. 
											 												 doi: 10.1128/AAC.00190-16 URL pmid: 27458231  | 
										
| [32] |  
											  Lindsay AK, Morales DK, Liu ZL , et al. Analysis of Candida albicans mutants defective in the cdk8 module of mediator reveal links between metabolism and biofilm formation[J]. PLoS Genet, 2014,10(10):e1004567. 
											 												 doi: 10.1371/journal.pgen.1004567 URL pmid: 25275466  | 
										
| [33] |  
											  Bachtiar EW, Bachtiar BM, Jarosz LM , et al. AI-2 of Aggregatibacter actinomycetemcomitans inhibits Candida albicans biofilm formation[J]. Front Cell Infect Microbiol, 2014,4:94-102. 
											 												 doi: 10.3389/fcimb.2014.00094 URL pmid: 25101248  | 
										
| [34] |  
											  Brusca MI, Rosa A, Albaina O , et al. The impact of oral contraceptives on women’s periodontal health and the subgingival occurrence of aggressive periodontopathogens and Candida species[J]. J Periodontol, 2010,81(7):1010-1018. 
											 												 doi: 10.1902/jop.2010.090575 URL pmid: 20370418  | 
										
| [35] |  
											  Cruz MR, Graham CE, Gagliano BC , et al. Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans[J]. Infect Immun, 2013,81(1):189-200. 
											 												 doi: 10.1128/IAI.00914-12 URL  | 
										
| [36] |  
											  Graham CE, Cruz MR, Garsin DA , et al. Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans[J]. Proc Natl Acad Sci USA, 2017,114(17):4507-4512. 
											 												 doi: 10.1073/pnas.1620432114 URL pmid: 28396417  | 
										
| [37] |  
											  Peters BM, Noverr MC . Candida albicans-Staphylococcus aureus polymicrobial peritonitis modulates host innate immunity[J]. Infect Immun, 2013,81(6):2178-2189. 
											 												 doi: 10.1128/IAI.00265-13 URL  | 
										
| [38] |  
											  Peters BM, Ward RM, Rane HS , et al. Efficacy of ethanol against Candida albicans and Staphylococcus aureus polymicrobial biofilms[J]. Antimicrob Agent Chemother, 2013,57(1):74-82. 
											 												 doi: 10.1128/AAC.01599-12 URL pmid: 23070170  | 
										
| [39] |  
											  Nash EE, Peters BM, Fidel PL , et al. Morphology-independent virulence of Candida species during polymicrobial intra-abdominal infections with Staphylococcus aureus[J]. Infect Immun, 2016,84(1):90-98. 
											 												 doi: 10.1128/IAI.01059-15 URL pmid: 26483410  | 
										
| [40] |  
											  Fehrmann C, Jurk K, Bertling A , et al. Role for the fibrinogen-binding proteins Coagulase and Efb in the Staphylococcus aureus-Candida interaction[J]. Int J Med Microbiol, 2013,303(5):230-238. 
											 												 doi: 10.1016/j.ijmm.2013.02.011 URL pmid: 23684234  | 
										
| [41] |  
											  Krause J, Geginat G, Tammer I . Prostaglandin E2 from Candida albicans stimulates the growth of Staphylococcus aureus in mixed biofilms[J]. PLoS One, 2015,10(8):e0135404. 
											 												 doi: 10.1371/journal.pone.0135404 URL pmid: 26262843  | 
										
| [42] |  
											  de Carvalho Dias K, Barbugli PA, de Patto F , et al. Soluble factors from biofilm of Candida albicans and Staphylococcus aureus promote cell death and inflammatory response[J]. BMC Microbiology, 2017,17(1):146-155. 
											 												 doi: 10.1186/s12866-017-1031-5 URL pmid: 28666415  | 
										
| [43] |  
											  Fox SJ, Shelton BT, Kruppa MD . Characterization of genetic determinants that modulate Candida albicans filamentation in the presence of bacteria[J]. PLoS One, 2013,8(8):e71939. 
											 												 doi: 10.1371/journal.pone.0071939 URL pmid: 23951271  | 
										
| [1] | 李修珍, 姜明, 张颖, 刘育含, 李帆, 曾飞, 马玉莹, 杨加震, 杨芳. 基于重水拉曼技术的白色念珠菌对变异链球菌代谢活性和耐药性影响的研究[J]. 华西口腔医学杂志, 2022, 40(2): 225-231. | 
| [2] | 梅宏翔, 陈奕霖, 施培磊, 杨偲睿, 徐欣, 何金枝. 口腔细菌影响宿主表观遗传调控的研究进展[J]. 华西口腔医学杂志, 2020, 38(5): 583-588. | 
| [3] | 廖敏, 程磊, 周学东, 任彪. 白色念珠菌对口腔黏膜疾病恶性转化作用的研究进展[J]. 华西口腔医学杂志, 2020, 38(4): 431-437. | 
| [4] | 沈鑫,姚羽菲,李继遥,李燕. 人体真菌组与疾病[J]. 华西口腔医学杂志, 2019, 37(3): 314-319. | 
| [5] | 王禄 郑欣 王诗达 李继遥 徐欣. 细菌非编码小RNA对细菌毒力的调控作用[J]. 华西口腔医学杂志, 2016, 34(4): 433-438. | 
| [6] | 张洋洋,何金枝,徐欣,周学东. 不同龋敏感青少年口腔细菌多样性分析[J]. 华西口腔医学杂志, 2015, 33(6): 602-606. | 
| [7] | 余擎 杨扬 常蓓. 根尖感染的控制技术[J]. 华西口腔医学杂志, 2014, 32(5): 427-431. | 
| [8] | 郭瑞 车团结 居军 杨森 何祥一 张莹. 兰州地区唾液幽门螺杆菌感染状况分析[J]. 华西口腔医学杂志, 2014, 32(4): 358-362. | 
| [9] | 薛莉 孟玉坤 唐霞. 烤瓷表面抛光和上釉对其表面粗糙度及细菌黏附的影响[J]. 华西口腔医学杂志, 2012, 30(1): 10-12. | 
| [10] | 段丁瑜 王爽 张利平 赵蕾 徐屹. 不同细菌密度的浮游牙龈卟啉单胞菌及其生物膜对甲硝唑敏感性的体外研究[J]. 华西口腔医学杂志, 2011, 29(06): 571-575. | 
| [11] | 郭强 肖丽英 周学东 李明云 鲁维希 熊萍 贾向明 李伟. 口腔常见链球菌代谢组学鉴定的研究[J]. 华西口腔医学杂志, 2009, 27(05): 553-556. | 
| [12] | 鲁维希 吴亚菲 肖丽英 李明云 郭强 熊萍 贾向明 肖晓蓉 朱硃 龚其美 李伟. 牙周可疑致病菌代谢组学鉴定的初步研究[J]. 华西口腔医学杂志, 2009, 27(03): 310-312. | 
| [13] | 熊萍 周京琳 肖丽英 孔祥丽 李继遥 贾向明 李伟. 变异链球菌、血链球菌及嗜酸乳杆菌代谢组学鉴定的初步研究[J]. 华西口腔医学杂志, 2008, 26(05): 537-540. | 
| [14] | 李淼 肖丽英 李继遥 孔祥丽 于佳辉 周京琳 肖晓蓉 朱硃 龚其美 李伟. 常见致龋菌代谢组学鉴定的初步研究[J]. 华西口腔医学杂志, 2007, 25(04): 342-344. | 
| [15] | 窦永青 杜文力 薛毅 陈惠珍 赵满琳. 黄芩苷降解细菌内毒素的定量分析测定[J]. 华西口腔医学杂志, 2007, 25(02): 169-172. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||