华西口腔医学杂志 ›› 2025, Vol. 43 ›› Issue (2): 249-261.doi: 10.7518/hxkq.2025.2024275
收稿日期:
2024-07-28
修回日期:
2024-11-05
出版日期:
2025-04-01
发布日期:
2025-03-25
通讯作者:
翟远坤
E-mail:fmm1660445237@126.com;zhaiyuankun@ henu.edu.cn;zhaiyuankun@henu.edu.cn
作者简介:
冯苗苗,住院医师,硕士,E-mail:基金资助:
Feng Miaomiao(), Xu Xiaoran, Li Ningli, Yang Mingzhen, Zhai Yuankun(
)
Received:
2024-07-28
Revised:
2024-11-05
Online:
2025-04-01
Published:
2025-03-25
Contact:
Zhai Yuankun
E-mail:fmm1660445237@126.com;zhaiyuankun@ henu.edu.cn;zhaiyuankun@henu.edu.cn
Supported by:
摘要:
目的 联合使用网络药理学、分子对接和分子动力学模拟技术探讨蛇床子治疗牙周炎伴骨质疏松的活性成分及潜在靶点,并探讨其可能的作用机制。 方法 通过TCMSP数据库、SwissTargetPrediction数据库并结合文献报道筛选蛇床子的主要化学成分及作用靶点;采用多种数据库预测牙周炎和骨质疏松的作用靶点;利用Venny 2.1获取蛇床子与牙周炎和骨质疏松的交集靶点;采用STRING数据库构建交集靶点的蛋白相互作用网络(PPI)图并使用Cytoscape 3.9.1软件构建活性成分-交集靶点网络,对其进行拓扑分析筛选关键靶点和核心活性成分;基于Metascape平台对交集靶点进行基因本体论(GO)和京都基因与基因组百科全书(KEGG)富集分析;选取节度点(degree)值排名前5位的核心靶点和核心活性成分,使用Discovery Studio 2019软件对配体和受体进行分子对接,并将结果可视化;使用Gromacs2022.3进行分子动力学模拟,以评估核心活性成分和关键靶点之间相互作用的稳定性。 结果 筛选得到蛇床子的20个潜在活性成分,蛇床子治疗牙周炎伴骨质疏松的作用靶点116个;对116个交集靶点进行GO和KEGG通路富集分析发现,蛇床子可能通过磷脂酰肌醇3激酶-蛋白激酶、晚期糖基化终产物-糖基化终末产物受体等信号通路发挥治疗作用;分子对接结果发现核心活性成分与关键靶点能够较好地结合,分子动力学模拟进一步验证了香叶木素-AKT1复合体稳定性。 结论 本研究揭示蛇床子通过多成分、多靶点、多途径的特点治疗牙周炎伴骨质疏松的潜在分子药理机制,为后续药物开发研究及临床应用提供理论基础。
中图分类号:
冯苗苗, 徐小苒, 李宁丽, 杨铭真, 翟远坤. 基于网络药理、分子对接和分子动力学模拟探讨蛇床子治疗牙周炎伴骨质疏松的作用机制[J]. 华西口腔医学杂志, 2025, 43(2): 249-261.
Feng Miaomiao, Xu Xiaoran, Li Ningli, Yang Mingzhen, Zhai Yuankun. Mechanism of Cnidii Fructus in the treatment of periodontitis with osteoporosis based on network pharmacology, molecular docking, and molecular dynamics simulation[J]. West China Journal of Stomatology, 2025, 43(2): 249-261.
表 1
经OB和DL筛选的蛇床子活性成分信息
编号 | Mol ID | 活性成分 | OB/% | DL |
---|---|---|---|---|
1 | MOL001510 | 24-epicampesterol | 37.58 | 0.71 |
2 | MOL001771 | poriferast-5-en-3beta-ol | 36.91 | 0.75 |
3 | MOL001941 | Ammidin | 34.55 | 0.22 |
4 | MOL002881 | Diosmetin | 31.14 | 0.27 |
5 | MOL002883 | Ethyl oleate (NF) | 32.40 | 0.19 |
6 | MOL000358 | beta-sitosterol | 36.91 | 0.75 |
7 | MOL003584 | Xanthoxylin N | 35.51 | 0.21 |
8 | MOL003588 | Prangenidin | 36.31 | 0.22 |
9 | MOL003591 | ar-curcumene | 52.34 | 0.65 |
10 | MOL003600 | cnidimol B | 68.66 | 0.26 |
11 | MOL003604 | cnidimol F | 54.43 | 0.28 |
12 | MOL003605 | (E)-2,3-bis (2-keto-7-methoxy-chromen-8-yl) acrolein | 56.38 | 0.71 |
13 | MOL003606 | cniforin A | 55.89 | 0.47 |
14 | MOL003607 | cniforin B | 36.70 | 0.60 |
15 | MOL003608 | O-Acetylcolumbianetin | 60.04 | 0.26 |
16 | MOL003617 | isogosferol | 30.07 | 0.25 |
17 | MOL003624 | O-Isovalerylcolum bianetin | 64.03 | 0.36 |
18 | MOL003626 | Ostruthin | 30.65 | 0.23 |
19 | MOL000449 | Stigmasterol | 43.83 | 0.76 |
20 | MOL000614 | osthol | 38.75 | 0.13 |
1 | Cui Y, Hong S, Xia Y, et al. Melatonin engineering M2 macrophage-derived exosomes mediate endoplasmic reticulum stress and immune reprogramming for periodontitis therapy[J]. Adv Sci (Weinh), 2023, 10(27): e230-2029. |
2 | 赖静, 余昕, 郭姗姗. 牙周炎和骨质疏松症相关性研究现状的探讨[J]. 现代医学与健康研究, 2023, 7(15): 131-134. |
Lai J, Yu X, Guo SS. Discussion on the current research status of the correlation between periodontitis and osteoporosis[J]. Modern Med Health Res, 2023, 7(15): 131-134. | |
3 | Yu B, Wang CY. Osteoporosis and periodontal disea-ses—An update on their association and mechanistic links[J]. Periodontol 2000, 2022, 89(1): 99-113. |
4 | 刘小雨, 郭瑞生, 吕方启. 慢性牙周炎与骨质疏松症相关性的研究进展[J]. 中国药物经济学, 2022, 17(11): 125-128. |
Liu XY, Guo RS, Lü FQ. Research progress on the relationship between chronic periodontitis and osteoporosis[J]. China J Pharma Econ, 2022, 17(11): 125-128. | |
5 | 郑学彬. 补肾固齿丸佐治慢性牙周炎合并骨质疏松对骨代谢和牙槽骨改变的影响[J]. 中国药业, 2018, 27(15): 37-40. |
Zheng XB. Clinical effect of Bushen Guchi Pills in the adjuvant treatment of chronic periodontitis complicated with osteoporosis and its effect on the changes of bone metabolism and alveolar bone[J]. China Pharma, 2018, 27(15): 37-40. | |
6 | Li N, Xie L, Wu Y, et al. Dexamethasone-loaded zeolitic imidazolate frameworks nanocomposite hydrogel with antibacterial and anti-inflammatory effects for periodontitis treatment[J]. Mater Today Bio, 2022, 16: 100360. |
7 | Xu S, Hu B, Dong T, et al. Alleviate periodontitis and its comorbidity hypertension using a nanoparticle-embedded functional hydrogel system[J]. Adv Healthc Mater, 2023, 12(20): e2203337. |
8 | Contaldo M, D’Ambrosio F, Ferraro GA, et al. Antibiotics in dentistry: a narrative review of the evidence beyond the myth[J]. Int J Environ Res Public Health, 2023, 20(11): 6025. |
9 | 孟焕新. 牙周病学[M]. 5版. 北京: 人民卫生出版社, 2020: 227-230. |
Meng HX. Periodontology[M]. 5th ed. Beijing: People’s Medical Publishing House, 2020: 227-230. | |
10 | Gao F, Hu Y, Ye X, et al. Optimal extraction and fingerprint analysis of Cnidii fructus by accelerated solvent extraction and high performance liquid chromatographic analysis with photodiode array and mass spectrometry detections[J]. Food Chem, 2013, 141(3): 1962-1971. |
11 | 郑苏阳, 马勇, 郭杨, 等. “温肾通络止痛方” 治疗原发性骨质疏松症的疗效观察及处方优化[J]. 辽宁中医杂志, 2016, 43(10): 2098-2100. |
Zheng SY, Ma Y, Guo Y, et al. Treating primary osteoporosis with prescription of Warming Kidney and Remo-ving Obstruction in Channels to Relieve Pain and formula optimization[J]. Liaoning J Tradit Chin Med, 2016, 43(10): 2098-2100. | |
12 | 陈亚琼, 高鹏, 沈慧. 蛇床子素通过调控miR-26a表达对人牙周膜干细胞生物学特性的影响[J]. 中成药, 2023, 45(5): 1690-1693. |
Chen YQ, Gao P, Shen H. Effects of osthole on the biological properties of human periodontal ligament stem cells by regulating the expression of miR-26a[J]. Chin Tradit Pat Med, 2023, 45(5): 1690-1693. | |
13 | 袁文秀, 王旭霞, 张丽娜, 等. 蛇床子素对大鼠正畸牙牙周组织改建的影响[J]. 上海口腔医学, 2019, 28(6): 561-566. |
Yuan WX, Wang XX, Zhang LN, et al. Effect of osthole on periodontal remodeling during orthodontic tooth mo-vement in rats[J]. Shanghai J Stomatol, 2019, 28(6): 561-566. | |
14 | Hopkins AL. Network pharmacology[J]. Nat Biotechnol, 2007, 25(10): 1110-1111. |
15 | Wang CR, Chen HW, Li Y, et al. Network pharmacology exploration reveals anti-apoptosis as a common therapeutic mechanism for non-alcoholic fatty liver disease treated with blueberry leaf polyphenols[J]. Nutrients, 2021, 13(11): 4060. |
16 | Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules[J]. Nucleic Acids Res, 2019, 47(W1): W357-W364. |
17 | Consortium UniProt. UniProt: a worldwide hub of protein knowledge[J]. Nucleic Acids Res, 2019, 47(D1): D506-D515. |
18 | Pan S, Hu B, Sun J, et al. Identification of cross-talk pathways and ferroptosis-related genes in periodontitis and type 2 diabetes mellitus by bioinformatics analysis and experimental validation[J]. Front Immunol, 2022, 13: 1015491. |
19 | Han J, Wang Y, Zhou H, et al. CD137 regulates bone loss via the p53 wnt/β-catenin signaling pathways in aged mice[J]. Front Endocrinol (Lausanne), 2022, 13: 922501. |
20 | Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased co-verage, supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Res, 2019, 47(D1): D607-D613. |
21 | Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets[J]. Nat Commun, 2019, 10(1): 1523. |
22 | Gene Ontology Consortium. The Gene Ontology resour-ce: enriching a GOld mine[J]. Nucleic Acids Res, 2021, 49(D1): D325-D334. |
23 | 袁炜, 耿辉, 王馨笛, 等. 生物信息综合数据库KEGG的应用[J]. 中国循证心血管医学杂志, 2022, 14(6): 669-673. |
Yuan W, Geng H, Wang XD, et al. Application of database of Kyoto encyclopedia of genes and genomes, a comprehensive bioinformatics database[J]. Chin J Evid-Based Cardiovasc Med, 2022, 14(6): 669-673. | |
24 | Wang L, Wang Y, Yang W, et al. Network pharmacology and molecular docking analysis on mechanisms of Tibetan Hongjingtian (Rhodiola crenulata) in the treatment of COVID-19[J]. J Med Microbiol, 2021, 70(7): 001374. |
25 | Kim S, Chen J, Cheng T, et al. PubChem in 2021: new data content and improved web interfaces[J]. Nucleic Acids Res, 2021, 49(D1): D1388-D1395. |
26 | Yin B, Bi YM, Fan GJ, et al. Molecular mechanism of the effect of Huanglian Jiedu decoction on type 2 diabetes mellitus based on network pharmacology and molecular docking[J]. J Diabetes Res, 2020, 2020: 5273914. |
27 | Burley SK, Bhikadiya C, Bi C, et al. RCSB Protein Data Bank (RCSB.org): delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning[J]. Nucleic Acids Res, 2023, 51(D1): D488-D508. |
28 | Wang S, Li Y, Wang J, et al. ADMET evaluation in drug discovery. 12. Development of binary classification models for prediction of hERG potassium channel blockage[J]. Mol Pharm, 2012, 9(4): 996-1010. |
29 | Cheng T, Li X, Li Y, et al. Comparative assessment of scoring functions on a diverse test set[J]. J Chem Inf Mo-del, 2009, 49(4): 1079-1093. |
30 | Rampogu S, Park C, Ravinder D, et al. Pharmacotherapeutics and molecular mechanism of phytochemicals in alleviating hormone-responsive breast cancer[J]. Oxid Med Cell Longev, 2019, 2019: 5189490. |
31 | Pronk S, Páll S, Schulz R, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit[J]. Bioinformatics, 2013, 29(7): 845-854. |
32 | Elekofehinti OO, Iwaloye O, Josiah SS, et al. Molecular docking studies, molecular dynamics and ADME/tox reveal therapeutic potentials of STOCK1N-69160 against papain-like protease of SARS-CoV-2[J]. Mol Divers, 2021, 25(3): 1761-1773. |
33 | 祁巧玲, 王梦婷, 陈蕊, 等. 治疗牙周炎所致牙槽骨吸收的前景药物[J]. 中国医院药学杂志, 2016, 36(3): 244-249. |
Qi QL, Wang MT, Chen R, et al. Prospective drugs in the treatment of alveolar bone loss in periodontitis[J]. Chin J Hosp Pharm, 2016, 36(3): 244-249. | |
34 | Sanz M, Beighton D, Curtis MA, et al. Role of microbial biofilms in the maintenance of oral health and in the development of dental caries and periodontal diseases. Consensus report of group 1 of the Joint EFP/ORCA workshop on the boundaries between caries and perio-dontal disease[J]. J Clin Periodontol, 2017, 44 : S5-S11. |
35 | 杨卫, 赵品, 陶美玲, 等. 淫羊藿苷口服给药对骨质疏松牙周炎小鼠牙槽骨吸收的影响[J]. 上海口腔医学, 2019, 28(1): 30-35. |
Yang W, Zhao P, Tao ML, et al. Effect of oral administration of icariin on periodontitis associated alveolar bone resorption in an osteoporosis mouse model[J]. Shanghai J Stomatol, 2019, 28(1): 30-35. | |
36 | Khan SA, Wu Y, Li AS, et al. Network pharmacology and molecular docking-based prediction of active compounds and mechanisms of action of Cnidii Fructus in treating atopic dermatitis[J]. BMC Complement Med Ther, 2022, 22(1): 275. |
37 | Xiong Y, Zhao B, Zhang W, et al. Curcumin promotes osteogenic differentiation of periodontal ligament stem cells through the PI3K/AKT/Nrf2 signaling pathway[J]. Iran J Basic Med Sci, 2020, 23(7): 954-960. |
38 | Mukherjee A, Rotwein P. Selective signaling by Akt1 controls osteoblast differentiation and osteoblast-media-ted osteoclast development[J]. Mol Cell Biol, 2012, 32(2): 490-500. |
39 | Gui X, Chen H, Cai H, et al. Leptin promotes pulmonary fibrosis development by inhibiting autophagy via PI3K/Akt/mTOR pathway[J]. Biochem Biophys Res Commun, 2018, 498(3): 660-666. |
40 | 姬晓炜, 冯凯, 吴泽钰, 等. 基于网络药理学和分子对接探讨香加皮防治牙周炎的作用机制[J]. 新疆医科大学学报, 2022, 45(8): 867-879. |
Ji XW, Feng K, Wu ZY, et al. To explore mechanism of Cortex Periplocae Radicis in prevention and treatment of periodontitis based on network pharmacology and molecular docking[J]. J Xinjiang Med Univ, 2022, 45(8): 867-879. | |
41 | Yang X, Jiang T, Wang Y, et al. The role and mechanism of SIRT1 in resveratrol-regulated osteoblast autophagy in osteoporosis rats[J]. Sci Rep, 2019, 9(1): 18424. |
42 | Liu F, Huang X, He JJ, et al. Plantamajoside attenuates inflammatory response in LPS-stimulated human gingival fibroblasts by inhibiting PI3K/AKT signaling pathway[J]. Microb Pathog, 2019, 127: 208-211. |
43 | Pan JM, Wu LG, Cai JW, et al. Dexamethasone suppres-ses osteogenesis of osteoblast via the PI3K/Akt signa-ling pathway in vitro and in vivo [J]. J Recept Signal Transduct Res, 2019, 39(1): 80-86. |
44 | Li M, Pan Z, He Q, et al. Arctiin attenuates iron over-load‑induced osteoporosis by regulating the PI3K/Akt pathway[J]. Int J Mol Med, 2023, 52(5): 108. |
45 | Goldin A, Beckman JA, Schmidt AM, et al. Advanced glycation end products: sparking the development of diabetic vascular injury[J]. Circulation, 2006, 114(6): 597-605. |
46 | Nonaka K, Kajiura Y, Bando M, et al. Advanced glycation end-products increase IL-6 and ICAM-1 expression via RAGE, MAPK and NF-κB pathways in human gingival fibroblasts[J]. J Periodontal Res, 2018, 53(3): 334-344. |
47 | Abbass MM, Korany NS, Salama AH, et al. The relationship between receptor for advanced glycation end products expression and the severity of periodontal disease in the gingiva of diabetic and non diabetic periodontitis patients[J]. Arch Oral Biol, 2012, 57(10): 1342-1354. |
48 | Shen CY, Lu CH, Wu CH, et al. The development of maillard reaction, and advanced glycation end product (AGE)-receptor for AGE (RAGE) signaling inhibitors as novel therapeutic strategies for patients with AGE-related diseases[J]. Molecules, 2020, 25(23): 5591. |
49 | Asadipooya K, Uy EM. Advanced glycation end pro-ducts (AGEs), receptor for AGEs, diabetes, and bone: review of the literature[J]. J Endocr Soc, 2019, 3(10): 1799-1818. |
50 | Zhu C, Shen S, Zhang S, et al. Autophagy in bone remodeling: a regulator of oxidative stress[J]. Front Endocrinol (Lausanne), 2022, 13: 898634. |
51 | 马遥, 姜兆伟, 靳云轶, 等. 大鼠牙周炎正畸牙移动初期TNF信号通路的基因本体分析[J].口腔疾病防治, 2019, 27(11): 695-702. |
Ma Y, Jiang ZW, Jin YY, et al. Gene ontology analysis of the TNF signaling pathway in early orthodontic tooth movement of rats with periodontitis[J]. J Prev Treat Stomatol Dis, 2019, 27(11): 695-702. | |
52 | Wang X, Pei Z, Hao T, et al. Prognostic analysis and validation of diagnostic marker genes in patients with osteoporosis[J]. Front Immunol, 2022, 13: 987937. |
[1] | 张雪颖, 孟鑫, 刘志臻, 张康, 冀洪海, 孙敏敏. 人参皂苷Rb3调节磷酸化细胞外信号调节激酶通路减轻牙周炎大鼠炎症反应促进成骨[J]. 华西口腔医学杂志, 2025, 43(2): 236-248. |
[2] | 付岚清, 郝新宇, 钱文博, 孙颖. 基础治疗对重度牙周炎患者龈沟液内中性粒细胞胞外诱捕网形成的影响研究[J]. 华西口腔医学杂志, 2025, 43(1): 46-52. |
[3] | 陈宇翔, 赵安娜, 杨浩然, 杨霞, 程婷婷, 饶先琦, 李自良. 基于机器学习和生物信息学分析的脂肪酸代谢相关基因在牙周炎中的作用研究[J]. 华西口腔医学杂志, 2024, 42(6): 735-747. |
[4] | 周露露, 滕念, 高甜甜, 王洪斌, 高翔. 香芹酚水凝胶对牙周炎大鼠牙槽骨保护作用研究[J]. 华西口腔医学杂志, 2024, 42(5): 593-608. |
[5] | 宋子毅, 杨超, 张云龙, 张柱江, 任天娇, 张欣悦, 李雪. 基于基因表达综合数据库芯片挖掘结合网络药理学与分子对接探讨芒果苷治疗口腔黏膜下纤维化的机制研究[J]. 华西口腔医学杂志, 2024, 42(4): 444-451. |
[6] | 李琼, 马浩楠, 商雅琦, 辛禧瑞, 刘歆婵, 武洲, 于维先. 线粒体解偶联蛋白2在大鼠实验性牙周炎相关肾损伤中的作用研究[J]. 华西口腔医学杂志, 2024, 42(4): 502-511. |
[7] | 杨荣霞, 宗颖睿, 张晨. 慢性牙周炎与帕金森病之间潜在相关性的初探[J]. 华西口腔医学杂志, 2024, 42(4): 521-530. |
[8] | 李钺, 许春梅, 谢旭东, 施培磊, 王骏, 丁一. 骨膜蛋白在小鼠牙周炎进程中的时空表达规律研究[J]. 华西口腔医学杂志, 2024, 42(3): 286-295. |
[9] | 辛雨, 傅若冰, 辛禧瑞, 商雅琦, 刘歆婵, 于维先. 缝隙连接蛋白43通过调控凋亡参与大鼠牙周炎相关肾损伤[J]. 华西口腔医学杂志, 2024, 42(3): 296-303. |
[10] | 马浩楠, 李琼, 商雅琦, 辛禧瑞, 刘歆婵, 武洲, 于维先. 生物钟蛋白Bmal1对实验性牙周炎相关肾损伤的影响[J]. 华西口腔医学杂志, 2024, 42(2): 163-171. |
[11] | 孙金梦, 张颖, 郑泽君, 丁晓玲, 孙敏敏, 丁刚. 基于网络药理学和分子对接技术探讨人参对牙周炎的潜在治疗机制[J]. 华西口腔医学杂志, 2024, 42(2): 181-191. |
[12] | 叶畅畅, 杨禾, 黄萍. 意向性牙再植术保留重度牙周炎患牙的临床应用策略[J]. 华西口腔医学杂志, 2024, 42(1): 12-18. |
[13] | 王勤涛, 马志伟, 王津津. 重度牙周炎患牙拔除或挽救之思考[J]. 华西口腔医学杂志, 2023, 41(6): 635-640. |
[14] | 张彦表, 魏美容, 夏天永, 尹文婷, 毛淑梅. 2型糖尿病患者血清半乳糖凝聚素-3水平与牙周炎的相关性研究[J]. 华西口腔医学杂志, 2023, 41(6): 653-661. |
[15] | 蔡红宣, 王正安, 张赞, 戴晶怡, 司为幸, 符起亚, 杨静文, 田亚光. 巴戟天多糖通过上调沉默信息调节因子1抑制炎性牙周膜细胞NOD样受体热蛋白结构域相关蛋白3的表达及活性[J]. 华西口腔医学杂志, 2023, 41(6): 662-670. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||