1 |
Xu X, Poulsen KL, Wu L, et al. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH)[J]. Signal Transduct Target Ther, 2022, 7(1): 287.
|
2 |
Zhang C, Yang M. Current options and future directions for NAFLD and NASH treatment[J]. Int J Mol Sci, 2021, 22(14): 7571.
|
3 |
Jayakumar S, Loomba R. Review article: emerging role of the gut microbiome in the progression of nonalcoho-lic fatty liver disease and potential therapeutic implications[J]. Aliment Pharmacol Ther, 2019, 50(2): 144-158.
|
4 |
Nagasaki A, Sakamoto S, Arai T, et al. Elimination of Porphyromonas gingivalis inhibits liver fibrosis and inflammation in NASH[J]. J Clin Periodontol, 2021, 48(10): 1367-1378.
|
5 |
Sumida Y, Yoneda M. Current and future pharmacolo-gical therapies for NAFLD/NASH[J]. J Gastroenterol, 2018, 53(3): 362-376.
|
6 |
Diskin C, Pålsson-McDermott EM. Metabolic modulation in macrophage effector function[J]. Front Immunol, 2018, 9: 270.
|
7 |
Barreby E, Chen P, Aouadi M. Macrophage functional diversity in NAFLD-more than inflammation[J]. Nat Rev Endocrinol, 2022, 18(8): 461-472.
|
8 |
Kazankov K, Jørgensen SMD, Thomsen KL, et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(3): 145-159.
|
9 |
Mehal WZ, Schuppan D. Antifibrotic therapies in the li-ver[J]. Semin Liver Dis, 2015, 35(2): 184-198.
|
10 |
Pellicoro A, Ramachandran P, Iredale JP, et al. Liver fibrosis and repair: immune regulation of wound healing in a solid organ[J]. Nat Rev Immunol, 2014, 14(3): 181-194.
|
11 |
Ramachandran P, Pellicoro A, Vernon MA, et al. Diffe-rential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis[J]. PNAS, 2012, 109(46): E3186-E3195.
|
12 |
Tacke F, Zimmermann HW. Macrophage heterogeneity in liver injury and fibrosis[J]. J Hepatol, 2014, 60(5): 1090-1096.
|
13 |
Karlmark KR, Weiskirchen R, Zimmermann HW, et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis[J]. He-patology, 2009, 50(1): 261-274.
|
14 |
Duffield JS, Forbes SJ, Constandinou CM, et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair[J]. J Clin Invest, 2005, 115(1): 56-65.
|
15 |
Schuppan D, Surabattula R, Wang XY. Determinants of fibrosis progression and regression in NASH[J]. J Hepatol, 2018, 68(2): 238-250.
|
16 |
Eming SA, Wynn TA, Martin P. Inflammation and metabolism in tissue repair and regeneration[J]. Science, 2017, 356(6342): 1026-1030.
|
17 |
Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines[J]. Immunity, 2014, 41(1): 14-20.
|
18 |
Hou R, Huang R, Zhou Y, et al. Single-cell profiling of the microenvironment in decidual tissue from women with missed abortions[J]. Fertil Steril, 2023, 119(3): 492-503.
|
19 |
Xia H, Liu Y, Xia G, et al. Novel isoquinoline alkaloid litcubanine A—A potential anti-inflammatory candidate[J]. Front Immunol, 2021, 12: 685556.
|
20 |
Caligiuri A, Gentilini A, Marra F. Molecular pathogenesis of NASH[J]. Int J Mol Sci, 2016, 17(9): E1575.
|
21 |
Poynard T, Munteanu M, Charlotte F, et al. Impact of steatosis and inflammation definitions on the performance of NASH tests[J]. Eur J Gastroenterol Hepatol, 2018, 30(4): 384-391.
|
22 |
Arrese M, Cabrera D, Kalergis AM, et al. Innate immunity and inflammation in NAFLD/NASH[J]. Dig Dis Sci, 2016, 61(5): 1294-1303.
|
23 |
Schuster S, Cabrera D, Arrese M, et al. Triggering and resolution of inflammation in NASH[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(6): 349-364.
|
24 |
Guilliams M, Scott CL. Liver macrophages in health and disease[J]. Immunity, 2022, 55(9): 1515-1529.
|
25 |
刘崇武, 吴春芳, 骆凯, 等. 牙龈卟啉单胞菌脂多糖和白细胞介素-10对高脂血症兔肺巨噬细胞SR-A表达的影响[J]. 福建医科大学学报, 2014, 48(4): 213-216.
|
|
Liu CW, Wu CF, Luo K, et al. The impact of Porphyromonas gingivalis lipopolysaccharide and IL-10 on the expression of SR-A in hyperlipidemic rabbit alveolar macrophages[J]. J Fujian Med Univ, 2014, 48(4): 213-216.
|
26 |
申道南, 吴亚菲, 赵蕾. 牙周致病菌在动脉粥样硬化发生发展中的作用研究[J]. 中华口腔医学杂志, 2021, 56(6): 584-590.
|
|
Shen DN, Wu YF, Zhao L. Roles of periodontal pathogens in the pathogenesis of atherosclerosis[J]. Chin J Sto-matol, 2021, 56(6): 584-590.
|
27 |
Willems E, Alkema W, Keizer-Garritsen J, et al. Biosynthetic homeostasis and resilience of the complement system in health and infectious disease[J]. EBioMedicine, 2019, 45: 303-313.
|
28 |
Civeira-Marín M, Cenarro A, Marco-Benedí V, et al. A-POE genotypes modulate inflammation independently of their effect on lipid metabolism[J]. Int J Mol Sci, 2022, 23(21): 12947.
|
29 |
Tran MTN, Hamada M, Jeon H, et al. MafB is a critical regulator of complement component C1q[J]. Nat Commun, 2017, 8(1): 1700.
|
30 |
Wu Z, Zhang Z, Lei Z, et al. CD14: biology and role in the pathogenesis of disease[J]. Cytokine Growth Factor Rev, 2019, 48: 24-31.
|
31 |
Maurer M, von Stebut E. Macrophage inflammatory protein-1[J]. Int J Biochem Cell Biol, 2004, 36(10): 1882-1886.
|
32 |
Orci LA, Kreutzfeldt M, Goossens N, et al. Tolerogenic properties of liver macrophages in non-alcoholic steatohepatitis[J]. Liver Int, 2020, 40(3): 609-621.
|