| 1 | Dutra EH, Nanda R, Yadav S. Bone response of loaded periodontal ligament[J]. Curr Osteoporos Rep, 2016, 14(6): 280-283. | 
																													
																						| 2 | Huang H, Williams RC, Kyrkanides S. Accelerated orthodontic tooth movement: molecular mechanisms[J]. Am J Orthod Dentofacial Orthop, 2014, 146(5): 620-632. | 
																													
																						| 3 | Wang M, Zhang L, Lin F, et al. Dynamic study into autophagy and apoptosis during orthodontic tooth movement[J]. Exp Ther Med, 2021, 21(5): 430. | 
																													
																						| 4 | Yang J, Zhou R, Ma Z. Autophagy and energy metabolism[J]. Adv Exp Med Biol, 2019, 1206: 329-357. | 
																													
																						| 5 | Wong SQ, Kumar AV, Mills J, et al. Autophagy in aging and longevity[J]. Hum Genet, 2020, 139(3): 277-290. | 
																													
																						| 6 | Deretic V. Autophagy in inflammation, infection, and immunometabolism[J]. Immunity, 2021, 54(3): 437-453. | 
																													
																						| 7 | Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy[J]. Nat Rev Mol Cell Biol, 2018, 19(6): 349-364. | 
																													
																						| 8 | Wang M, Zhang L, Lin F, et al. Dynamic study into autophagy and apoptosis during orthodontic tooth movement[J]. Exp Ther Med, 2021, 21(5): 430. | 
																													
																						| 9 | Xu J, Zhao X, Zeng J, et al. Role of autophagy in the periodontal ligament reconstruction during orthodontic tooth movement in rats[J]. J Dent Sci, 2020, 15(3): 351-363. | 
																													
																						| 10 | Wan H, Tang B, Liao X, et al. Analysis of neuronal phosphoproteome reveals PINK1 regulation of BAD function and cell death[J]. Cell Death Differ, 2018, 25(5): 904-917. | 
																													
																						| 11 | Gu X, Qi Y, Feng Z, et al. Lead (Pb) induced ATM-dependent mitophagy via PINK1/Parkin pathway[J]. Toxicol Lett, 2018, 291: 92-100. | 
																													
																						| 12 | 周晓芸, 宋雨鸿, 薛丹, 等. 基于线粒体自噬探讨参苓白术散对COPD骨骼肌损伤细胞的保护作用机制[J]. 广东药科大学学报, 2020, 36(3): 369-374. | 
																													
																						|  | Zhou XY, Song YH, Xue D, et al. Protective mechanism of Shenling Baizhu powder on the injured cells of CO-PD skeletal muscle based on mitochondrial autophagy[J]. J Guangdong Pharm Univ, 2020, 36(3): 369-374. | 
																													
																						| 13 | Ren Y, Shen HM. Critical role of AMPK in redox regulation under glucose starvation[J]. Redox Biol, 2019, 25: 101154. | 
																													
																						| 14 | Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation[J]. Antioxid Redox Signal, 2014, 20(3): 460-473. | 
																													
																						| 15 | Kim KH, Lee MS. Autophagy—a key player in cellular and body metabolism[J]. Nat Rev Endocrinol, 2014, 10(6): 322-337. | 
																													
																						| 16 | Li Y, Jacox LA, Coats S, et al. Roles of autophagy in orthodontic tooth movement[J]. Am J Orthod Dentofacial Orthop, 2021, 159(5): 582-593. | 
																													
																						| 17 | Huang H, Williams RC, Kyrkanides S. Accelerated orthodontic tooth movement: molecular mechanisms[J]. Am J Orthod Dentofacial Orthop, 2014, 146(5): 620-632. | 
																													
																						| 18 | Niklas A, Proff P, Gosau M, et al. The role of hypoxia in orthodontic tooth movement[J]. Int J Dent, 2013, 2013: 841840. | 
																													
																						| 19 | Li L, Tan J, Miao Y, et al. ROS and autophagy: interactions and molecular regulatory mechanisms[J]. Cell Mol Neurobiol, 2015, 35(5): 615-621. | 
																													
																						| 20 | 蒋玉坤, 胡芝爱, 关禹哲, 等. 应力诱导自噬的机械转导过程研究进展[J]. 四川大学学报(医学版), 2021, 52(6): 929-935. | 
																													
																						|  | Jiang YK, Hu ZA, Guan YZ, et al. Research progress in mechanotransduction process of mechanical-stress-indu-ced autophagy[J]. J Sichuan Univ (Med Sci), 2021, 52(6): 929-935. | 
																													
																						| 21 | Morel E, Dupont N, Codogno P. Primary cilium-dependent autophagy in the response to shear stress[J]. Biochem Soc Trans, 2021, 49(6): 2831-2839. | 
																													
																						| 22 | Zou R, Wu S, Wang Y, et al. Role of integrin‑linked kinase in static compressive stress‑induced autophagy via phosphatidylinositol 3 kinase in human periodontal ligament cells[J]. Int J Mol Med, 2021, 48(3): 167. | 
																													
																						| 23 | Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs[J]. Cell Death Differ, 2015, 22(3): 377-388. | 
																													
																						| 24 | Onishi M, Yamano K, Sato M, et al. Molecular mechanisms and physiological functions of mitophagy[J]. EMBO J, 2021, 40(3): e104705. | 
																													
																						| 25 | Battaglia AM, Chirillo R, Aversa I, et al. Ferroptosis and cancer: mitochondria meet the “Iron Maiden” cell death[J]. Cells, 2020, 9(6): 1505. | 
																													
																						| 26 | Tanaka K. The PINK1-Parkin axis: an overview[J]. Neurosci Res, 2020, 159: 9-15. | 
																													
																						| 27 | Dagda RK, Cherra SJ 3rd, Kulich SM, et al. Loss of PI-NK-1 function promotes mitophagy through effects on o-xidative stress and mitochondrial fission[J]. J Biol Chem, 2009, 284(20): 13843-13855. | 
																													
																						| 28 | Wang C, Yang Q, Han Y, et al. A reduced level of the long non-coding RNA SNHG8 activates the NF-kappaB pathway by releasing functional HIF-1alpha in a hypo-xic inflammatory microenvironment[J]. Stem Cell Res Ther, 2022, 13(1): 229. |