1 |
Scrivani SJ, Keith DA, Kaban LB. Temporomandibular disorders[J]. N Engl J Med, 2008, 359(25): 2693-2705.
|
2 |
Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain[J]. Pain, 2011, 152(3): S2-S15.
|
3 |
尹圆圆, 李飞, 龙镜亦, 等. 颞下颌关节紊乱病疼痛患者脑功能磁共振成像的研究进展[J]. 中华口腔医学杂志, 2019, 54(5): 350-355.
|
|
Yin YY, Li F, Long JY, et al. Advances in application of functional magnetic resonance imaging in patients with painful temporomandibular disorders[J]. Chin J Stomatol, 2019, 54(5): 350-355.
|
4 |
Kucyi A, Moayedi M, Weissman-Fogel I, et al. Enhanced medial prefrontal-default mode network functional connectivity in chronic pain and its association with pain rumination[J]. J Neurosci, 2014, 34(11): 3969-3975.
|
5 |
He SS, Li F, Song F, et al. Spontaneous neural activity alterations in temporomandibular disorders: a cross-sectional and longitudinal resting-state functional magnetic resonance imaging study[J]. Neuroscience, 2014, 278: 1-10.
|
6 |
He SS, Li F, Gu T, et al. Reduced corticostriatal functional connectivity in temporomandibular disorders[J]. Hum Brain Mapp, 2018, 39(6): 2563-2572.
|
7 |
Zhang J, Li X, Jin Z, et al. Spontaneous brain activity and connectivity in female patients with temporomandibular joint synovitis pain: a pilot functional magnetic resonance imaging study[J]. Oral Surg Oral Med Oral Pa-thol Oral Radiol, 2018, 126(4): 363-374.
|
8 |
Ichesco E, Quintero A, Clauw DJ, et al. Altered functional connectivity between the insula and the cingulate cortex in patients with temporomandibular disorder: a pilot study[J]. Headache, 2012, 52(3): 441-454.
|
9 |
Allen EA, Damaraju E, Plis SM, et al. Tracking whole-brain connectivity dynamics in the resting state[J]. Ce-reb Cortex, 2014, 24(3): 663-676.
|
10 |
Li J, Duan XJ, Cui Q, et al. More than just statics: temporal dynamics of intrinsic brain activity predicts the suicidal ideation in depressed patients[J]. Psychol Med, 2019, 49(5): 852-860.
|
11 |
Hutchison RM, Morton JB. It’s a matter of time: reframing the development of cognitive control as a modification of the brain’s temporal dynamics[J]. Dev Cogn Neurosci, 2016, 18: 70-77.
|
12 |
Zang YF, He Y, Zhu CZ, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI[J]. Brain Dev, 2007, 29(2): 83-91.
|
13 |
Liao W, Li J, Ji GJ, et al. Endless fluctuations: temporal dynamics of the amplitude of low frequency fluctuations[J]. IEEE Trans Med Imaging, 2019, 38(11): 2523-2532.
|
14 |
Cui Q, Sheng W, Chen YY, et al. Dynamic changes of amplitude of low-frequency fluctuations in patients with generalized anxiety disorder[J]. Hum Brain Mapp, 2020, 41(6): 1667-1676.
|
15 |
Meng XY, Zheng JJ, Liu YP, et al. Increased dynamic amplitude of low frequency fluctuation in primary insomnia[J]. Front Neurol, 2020, 11: 609.
|
16 |
Ma MY, Zhang H, Liu R, et al. Static and dynamic changes of amplitude of low-frequency fluctuations in cervical discogenic pain[J]. Front Neurosci, 2020, 14: 733.
|
17 |
Dworkin SF, LeResche L. Research diagnostic criteria for temporomandibular disorders: review, criteria, examinations and specifications, critique[J]. J Craniomandib Disord, 1992, 6(4): 301-355.
|
18 |
王生, 王光耀, 谷志远. Helkimo指数在颞下颌关节紊乱病研究中的应用[J]. 口腔颌面修复学杂志, 2002, 3(2): 120-123.
|
|
Wang S, Wang GY, Gu ZY. Application of Helkimo index in the study of temporomandibular disorders[J]. Chin J Prosthodont, 2002, 3(2): 120-123.
|
19 |
He SS, Deng X, Wamalwa P, et al. Correlation between centric relation-maximum intercuspation discrepancy and temporomandibular joint dysfunction[J]. Acta Odontol Scand, 2010, 68(6): 368-376.
|
20 |
Crawford SD. Condylar axis position, as determined by the occlusion and measured by the CPI instrument, and signs and symptoms of temporomandibular dysfunction[J]. Angle Orthod, 1999, 69(2): 103-116.
|
21 |
Dahlberg G. Statistical methods for medical and biological students[M]. New York: Interscience Publications, 1940.
|
22 |
Yan CG, Zang YF. DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI[J]. Front Syst Neurosci, 2010, 4: 13.
|
23 |
Power JD, Barnes KA, Snyder AZ, et al. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion[J]. Neuroimage, 2012, 59(3): 2142-2154.
|
24 |
Liao W, Wu GR, Xu Q, et al. DynamicBC: a MATLAB toolbox for dynamic brain connectome analysis[J]. Brain Connect, 2014, 4(10): 780-790.
|
25 |
Fransson P, Marrelec G. The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: evidence from a partial correlation network analysis[J]. Neuroimage, 2008, 42(3): 1178-1184.
|
26 |
Buckner RL, Andrews-Hanna JR, Schacter DL. The b-rain’s default network: anatomy, function, and relevance to disease[J]. Ann N Y Acad Sci, 2008, 1124: 1-38.
|
27 |
Buckner RL, Carroll DC. Self-projection and the brain[J]. Trends Cogn Sci, 2007, 11(2): 49-57.
|
28 |
Zhang JL, Su JJ, Wang MX, et al. Increased default mo-de network connectivity and increased regional homogeneity in migraineurs without aura[J]. J Headache Pain, 2016, 17(1): 98.
|
29 |
Shen ZX, Zhu JY, Ren L, et al. Aberrant amplitude low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) in generalized anxiety disorder (GAD) and their roles in predicting treatment remission[J]. Ann Transl Med, 2020, 8(20): 1319.
|
30 |
Gong JY, Wang JJ, Qiu SJ, et al. Common and distinct patterns of intrinsic brain activity alterations in major depression and bipolar disorder: voxel-based Meta-analysis[J]. Transl Psychiatry, 2020, 10(1): 353.
|
31 |
Lee J, Protsenko E, Lazaridou A, et al. Encoding of self-referential pain catastrophizing in the posterior cingulate cortex in fibromyalgia[J]. Arthritis Rheumatol, 2018, 70(8): 1308-1318.
|
32 |
Nolen-Hoeksema S, Wisco BE, Lyubomirsky S. Rethinking rumination[J]. Perspect Psychol Sci, 2008, 3(5): 400-424.
|
33 |
Weissman-Fogel I, Moayedi M, Tenenbaum HC, et al. Abnormal cortical activity in patients with temporomandibular disorder evoked by cognitive and emotional tasks[J]. Pain, 2011, 152(2): 384-396.
|
34 |
Maddock RJ, Garrett AS, Buonocore MH. Posterior cingulate cortex activation by emotional words: fMRI evidence from a valence decision task[J]. Hum Brain Mapp, 2003, 18(1): 30-41.
|
35 |
Benuzzi F, Lui F, Duzzi D, et al. Does it look painful or disgusting? Ask your parietal and cingulate cortex[J]. J Neurosci, 2008, 28(4): 923-931.
|
36 |
Preti MG, Bolton TA, van De Ville D. The dynamic functional connectome: state-of-the-art and perspectives[J]. Neuroimage, 2017, 160: 41-54.
|
37 |
Avivi-Arber L, Martin R, Lee JC, et al. Face sensorimotor cortex and its neuroplasticity related to orofacial sensorimotor functions[J]. Arch Oral Biol, 2011, 56(12): 1440-1465.
|
38 |
Yoshihara T, Matsumoto Y, Ogura T. Occlusal disharmony affects plasma corticosterone and hypothalamic noradrenaline release in rats[J]. J Dent Res, 2001, 80(12): 2089-2092.
|
39 |
Tang X, Li J, Jiang T, et al. Experimental occlusal disharmony—a promoting factor for anxiety in rats under chronic psychological stress[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2017, 75: 165-175.
|
40 |
Ono Y, Yamamoto T, Kubo KY, et al. Occlusion and brain function: mastication as a prevention of cognitive dysfunction[J]. J Oral Rehabil, 2010, 37(8): 624-640.
|
41 |
Gameiro GH, da Silva Andrade A, Nouer DF, et al. How may stressful experiences contribute to the development of temporomandibular disorders[J]. Clin Oral Investig, 2006, 10(4): 261-268.
|
42 |
Arborelius L, Owens MJ, Plotsky PM, et al. The role of corticotropin-releasing factor in depression and anxiety disorders[J]. J Endocrinol, 1999, 160(1): 1-12.
|
43 |
Moayedi M, Weissman-Fogel I, Salomons TV, et al. White matter brain and trigeminal nerve abnormalities in temporomandibular disorder[J]. Pain, 2012, 153(7): 1467-1477.
|
44 |
Harper DE, Shah Y, Ichesco E, et al. Multivariate classification of pain-evoked brain activity in temporomandibular disorder[J]. Pain Rep, 2016, 1(3): e572.
|
45 |
Kringelbach ML. The human orbitofrontal cortex: linking reward to hedonic experience[J]. Nat Rev Neurosci, 2005, 6(9): 691-702.
|
46 |
Ray RD, Ochsner KN, Cooper JC, et al. Individual differences in trait rumination and the neural systems supporting cognitive reappraisal[J]. Cogn Affect Behav Neu-rosci, 2005, 5(2): 156-168.
|
47 |
Wright CI, Williams D, Feczko E, et al. Neuroanatomical correlates of extraversion and neuroticism[J]. Cereb Cortex, 2006, 16(12): 1809-1819.
|
48 |
Moayedi M, Weissman-Fogel I, Crawley AP, et al. Contribution of chronic pain and neuroticism to abnormal forebrain gray matter in patients with temporomandibular disorder[J]. Neuroimage, 2011, 55(1): 277-286.
|
49 |
Younger JW, Shen YF, Goddard G, et al. Chronic myofascial temporomandibular pain is associated with neural abnormalities in the trigeminal and limbic systems[J]. Pain, 2010, 149(2): 222-228.
|