West China Journal of Stomatology ›› 2025, Vol. 43 ›› Issue (5): 636-647.doi: 10.7518/hxkq.2025.2024422
• Basic Research • Previous Articles
Geng Hongbao1(), Zhang Xingyi2, Zhou Siwei3, Li Na4, Liu Jia4, Yuan Xuewei4, Ning Chunliu2, Zhang Xudong2, Huang Wei2(
)
Received:
2024-11-17
Revised:
2025-05-08
Online:
2025-10-01
Published:
2025-10-21
Contact:
Huang Wei
E-mail:861181470@qq.com;huangwei@hebmu.edu.cn
Supported by:
CLC Number:
Geng Hongbao, Zhang Xingyi, Zhou Siwei, Li Na, Liu Jia, Yuan Xuewei, Ning Chunliu, Zhang Xudong, Huang Wei. Aloe-emodin inhibits scar tissue fibrosis through thrombospondin-1-PI3k-Akt pathway[J]. West China Journal of Stomatology, 2025, 43(5): 636-647.
Add to citation manager EndNote|Ris|BibTeX
[1] | Harikrishnan P, Balakumaran V. Analysis of intramaxillary and mid-face skeletal asymmetry in a three-dimensional model with complete unilateral cleft lip and palate[J]. J Craniofac Surg, 2018, 29(8): e759-e762. |
[2] | Shi B, Losee JE. The impact of cleft lip and palate repair on maxillofacial growth[J]. Int J Oral Sci, 2015, 7(1): 14-17. |
[3] | Xu X, Kwon HJ, Shi B, et al. Influence of different pa-late repair protocols on facial growth in unilateral complete cleft lip and palate[J]. J Craniomaxillofac Surg, 2015, 43(1): 43-47. |
[4] | 步宏, 李一雷. 病理学[M]. 9版. 北京: 人民卫生出版社, 2018: 40-41. |
Bu H, Li YL. Pathology[M]. 9th ed. Beijing: People’s Medical Publishing House, 2018: 40-41. | |
[5] | Talbott HE, Mascharak S, Griffin M, et al. Wound hea-ling, fibroblast heterogeneity, and fibrosis[J]. Cell Stem Cell, 2022, 29(8): 1161-1180. |
[6] | Buechler MB, Fu WX, Turley SJ. Fibroblast-macropha-ge reciprocal interactions in health, fibrosis, and cancer[J]. Immunity, 2021, 54(5): 903-915. |
[7] | 左俊, 马少林. β-谷甾醇对增生性瘢痕成纤维细胞作用机制的网络药理学分析[J]. 中国组织工程研究, 2024, 28(2): 216-223. |
Zuo J, Ma SL. Mechanism of beta-sitosterol on hypertrophic scar fibroblasts: an analysis based on network pharmacology[J]. Chin J Tissue Eng Res, 2024, 28(2): 216-223. | |
[8] | Wu X, Wang Z, Wu GF, et al. Tetramethylpyrazine induces apoptosis and inhibits proliferation of hypertrophic scar-derived fibroblasts via inhibiting the phosphorylation of AKT[J]. Front Pharmacol, 2020, 11: 602. |
[9] | Tang MY, Wang WB, Cheng LY, et al. The inhibitory effects of 20(R)-ginsenoside Rg3 on the proliferation, angiogenesis, and collagen synthesis of hypertrophic scar derived fibroblasts in vitro [J]. Iran J Basic Med Sci, 2018, 21(3): 309-317. |
[10] | Dong X, Zeng YW, Liu Y, et al. Aloe-emodin: a review of its pharmacology, toxicity, and pharmacokinetics[J]. Phytother Res, 2020, 34(2): 270-281. |
[11] | 张培华, 梁杰, 罗少军, 等. 芦荟大黄素对瘢痕成纤维细胞增殖的时间-剂量依赖性效应[J]. 中国组织工程研究, 2005, 9(22): 172-174, 292. |
Zhang PH, Liang J, Luo SJ, et al. Effect of aloe-emodin on proliferation of scar fibroblasts in a time-and dose-dependent manner[J]. Chin J Tissue Eng Res, 2005, 9(22): 172-174, 292. | |
[12] | Dou F, Liu YT, Liu LM, et al. Aloe-emodin ameliorates renal fibrosis via inhibiting PI3K/Akt/mTOR signaling pathway in vivo and in vitro [J]. Rejuvenation Res, 2019, 22(3): 218-229. |
[13] | Zhou Y, Wu R, Cai FF, et al. Development of a novel anti-liver fibrosis formula with luteolin, licochalcone A, aloe-emodin and acacetin by network pharmacology and transcriptomics analysis[J]. Pharm Biol, 2021, 59(1): 1594-1606. |
[14] | Zeng X, Cai G, Liang T, et al. Rhubarb and astragalus capsule attenuates renal interstitial fibrosis in rats with unilateral ureteral obstruction by alleviating apoptosis through regulating transforming growth factor beta1 (TGF-β1)/p38 mitogen-activated protein kinases (p38 MAPK) pathway[J]. Med Sci Monit, 2020, 26: e920720. |
[15] | Zhang DQ, Zhang LJ, Chen GF, et al. Hepatoprotec-tive effect of Xiayuxue decoction ethyl acetate fraction against carbon tetrachloride-induced liver fibrosis in mi-ce via inducing apoptosis and suppressing activation of hepatic stellate cells[J]. Pharm Biol, 2020, 58(1): 1229-1243. |
[16] | Bronson SM, Westwood B, Cook KL, et al. Discrete correlation summation clustering reveals differential regulation of liver metabolism by thrombospondin-1 in low-fat and high-fat diet-fed mice[J]. Metabolites, 2022, 12(11): 1036. |
[17] | Bige N, Shweke N, Benhassine S, et al. Thrombospondin-1 plays a profibrotic and pro-inflammatory role du-ring ureteric obstruction[J]. Kidney Int, 2012, 81(12): 1226-1238. |
[18] | Murphy-Ullrich JE, Suto MJ. Thrombospondin-1 regulation of latent TGF-β activation: a therapeutic target for fibrotic disease[J]. Matrix Biol, 2018, 68-69: 28-43. |
[19] | Li YZ, Turpin CP, Wang SX. Role of thrombospondin 1 in liver diseases[J]. Hepatol Res, 2017, 47(2): 186-193. |
[20] | Murphy-Ullrich JE. Thrombospondin 1 and its diverse roles as a regulator of extracellular matrix in fibrotic disease[J]. J Histochem Cytochem, 2019, 67(9): 683-699. |
[21] | Jana S, Zhang H, Lopaschuk GD, et al. Disparate remo-deling of the extracellular matrix and proteoglycans in failing pediatric versus adult hearts[J]. J Am Heart Assoc, 2018, 7(19): e010427. |
[22] | Shi Z, Xu L, Xie H, et al. Attenuation of intermittent hypoxia-induced apoptosis and fibrosis in pulmonary tissues via suppression of ER stress activation[J]. BMC Pulm Med, 2020, 20(1): 92. |
[23] | Zhou Y, Ng DYE, Richards AM, et al. microRNA-221 inhibits latent TGF-β1 activation through targeting th-rombospondin-1 to attenuate kidney failure-induced cardiac fibrosis[J]. Mol Ther Nucleic Acids, 2020, 22: 803-814. |
[24] | Asama H, Suzuki R, Hikichi T, et al. microRNA let-7d targets thrombospondin-1 and inhibits the activation of human pancreatic stellate cells[J]. Pancreatology, 2019, 19(1): 196-203. |
[25] | Jiang N, Zhang Z, Shao XH, et al. Blockade of thrombospondin-1 ameliorates high glucose-induced peritoneal fibrosis through downregulation of TGF-β1/Smad3 signaling pathway[J]. J Cell Physiol, 2020, 235(1): 364-379. |
[26] | Atanasova VS, Russell RJ, Webster TG, et al. Thrombospondin-1 is a major activator of TGF-β signaling in recessive dystrophic epidermolysis bullosa fibroblasts[J]. J Invest Dermatol, 2019, 139(7): 1497-1505.e5. |
[27] | Roberts DD, Miller TW, Rogers NM, et al. The matricellular protein thrombospondin-1 globally regulates cardiovascular function and responses to stress via CD47[J]. Matrix Biol, 2012, 31(3): 162-169. |
[28] | Bissinger R, Petkova-Kirova P, Mykhailova O, et al. Th-rombospondin-1/CD47 signaling modulates transmembrane cation conductance, survival, and deformability of human red blood cells[J]. Cell Commun Signal, 2020, 18(1): 155. |
[29] | Yang J, Nie J, Ma XL, et al. Targeting PI3K in cancer: mechanisms and advances in clinical trials[J]. Mol Cancer, 2019, 18(1): 26. |
[30] | Shi X, Wang JJ, Lei Y, et al. Research progress on the PI3K/AKT signaling pathway in gynecological cancer[J]. Mol Med Rep, 2019, 19(6): 4529-4535. |
[31] | Hsu HS, Liu CC, Lin JH, et al. Involvement of ER stress, PI3K/AKT activation, and lung fibroblast prolife-ration in bleomycin-induced pulmonary fibrosis[J]. Sci Rep, 2017, 7(1): 14272. |
[32] | Conte E, Fruciano M, Fagone E, et al. Inhibition of PI3-K prevents the proliferation and differentiation of human lung fibroblasts into myofibroblasts: the role of class Ⅰ P110 isoforms[J]. PLoS One, 2011, 6(10): e24663. |
[33] | Sun YW, Zhang YY, Chi P. Pirfenidone suppresses TG-F‑β1‑induced human intestinal fibroblasts activities by regulating proliferation and apoptosis via the inhibition of the Smad and PI3K/AKT signaling pathway[J]. Mol Med Rep, 2018, 18(4): 3907-3913. |
[34] | Wei WY, Ma ZG, Xu SC, et al. Pioglitazone protected against cardiac hypertrophy via inhibiting AKT/GSK3β and MAPK signaling pathways[J]. PPAR Res, 2016, 2016: 9174190. |
[35] | Xu XW, Khoong YM, Gu SC, et al. Investigating the potential of LSKL peptide as a novel hypertrophic scar treatment[J]. Biomedecine Pharmacother, 2020, 124: 109824. |
[36] | 赵小萍, 曾嵘, 王俭勤, 等. 大黄素对高糖介导的大鼠NRK52E TSP1和TGF-β1表达的影响[J]. 中国民族民间医药, 2009, 18(14): 1-3. |
Zhao XP, Zeng R, Wang JQ, et al. Effect of rhein on expression of thrombospondin-1 and transforming growth factor β1 in NRK52E cells stimulated by high glucose[J]. Chin J Ethnomed Ethnopharm, 2009, 18(14): 1-3. | |
[37] | 刘鸣昊, 张丽慧, 马庆亮, 等. 基于PI3K/AKT/NF-κB信号传导通路探讨大黄素对非酒精性脂肪性肝炎模型大鼠的影响[J]. 中华中医药杂志, 2020, 35(3): 1428-1432. |
Liu MH, Zhang LH, Ma QL, et al. Effects of emodin based on PI3K/AKT/NF-κB signaling pathway in rats with non-alcoholic steatohepatitis[J]. Chin J Trad Chin Med Pharm, 2020, 35(3): 1428-1432. | |
[38] | Fu SJ, Zhou YN, Hu C, et al. Network pharmacology and molecular docking technology-based predictive stu-dy of the active ingredients and potential targets of rhubarb for the treatment of diabetic nephropathy[J]. BMC Complement Med Ther, 2022, 22(1): 210. |
[39] | Cai FF, Bian YQ, Wu R, et al. Yinchenhao decoction suppresses rat liver fibrosis involved in an apoptosis regulation mechanism based on network pharmacology and transcriptomic analysis[J]. Biomed Pharmacother, 2019, 114: 108863. |
[1] | Cui Yingying, Ding Chuanyang, Peng Chaoran, Zhang Jianyun, Cai Xinjia, Li Tiejun. Progress in clinicopathological diagnosis of oral potentially malignant disorders [J]. West China Journal of Stomatology, 2025, 43(3): 314-324. |
[2] | Song Ziyi, Yang Chao, Zhang Yunlong, Zhang Zhujiang, Ren Tianjiao, Zhang Xinyue, Li Xue. Mechanism of mangiferin in the treatment of oral submucous fibrosis based on Gene Expression Omnibus database chip mining combined with network pharmacology and molecular docking [J]. West China Journal of Stomatology, 2024, 42(4): 444-451. |
[3] | Liu Yiming, Zhao Yun, Han Mei, Zhang Yuqiu, Mi Fanglin, Wang Bing. Preparation of functional poly-(lactic acid-co-glycolic acid)-based guided bone-regeneration membrane and its application in the reconstruction of mandibular defects in rats [J]. West China Journal of Stomatology, 2022, 40(5): 522-531. |
[4] | Huang Wei, Zhang Xiao, Li Man, Ning Chunliu, Wu Shanshan, Li Xiangjun. Comparative study on the influence of anterior and posterior scars of hard palate on maxillary growth after cleft palate surgery: a three-dimensional finite element analysis [J]. West China Journal of Stomatology, 2022, 40(2): 210-217. |
[5] | Guo Jincai, Xie Hui, Wu Hao, Tong Tiejun. Efficacy of curcumin in the treatment of oral submucous fibrosis: a Meta-analysis [J]. West China Journal of Stomatology, 2021, 39(2): 195-202. |
[6] | Xu Zhi,Lü Fengyuan,Jiang Erhui,Zhao Xiaoping,Shang Zhengjun. Relationship among areca nut, intracellular reactive oxygen species, and autophagy [J]. West China Journal of Stomatology, 2020, 38(1): 80-85. |
[7] | Bo Yang,Mengfan Fu,Zhangui Tang. Rat model with oral submucous fibrosis induced by arecoline and mechanical stimulation [J]. West China Journal of Stomatology, 2019, 37(3): 260-264. |
[8] | Xueqin Zhou,Jun Ren,Sen Yang. Relationship between thrombospondin-1 and the occurrence and development of oral and maxillofacial malignancy [J]. West China Journal of Stomatology, 2018, 36(6): 686-690. |
[9] | LI Ning1, JIAN Xin-chun1,XU Chun-jiao2. Expression of loricrin and cytochrome P450 3A5 in oral submucous fibrosis and their significance [J]. West China Journal of Stomatology, 2009, 27(01): 29-33. |
[10] | Han Weinong, Peng Jieying, Liu Shufan et al.. Ultrastructural Localization of PDGF-BB and PDGF-RBB in Oral Submucous Fibrosis [J]. West China Journal of Stomatology, 2002, 20(04): 254-256. |
[11] | Feng Yunzhi, Ling Tianyou. Effects of Areca Nut Extract on Levels of Intercellular Adhesion and Expression of Oral Fibroblasts [J]. West China Journal of Stomatology, 2002, 20(04): 241-243. |
[12] | . [J]. , 2000, 18(06): 0-. |
[13] | . [J]. , 2000, 18(04): 0-. |
[14] | . [J]. , 2000, 18(01): 0-. |
[15] | . [J]. , 1999, 17(03): 0-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||