1 |
Mossey PA, Little J, Munger RG, et al. Cleft lip and pa-late[J]. Lancet, 2009, 374(9703): 1773-1785.
|
2 |
Fan D, Wu S, Liu L, et al. Prevalence of non-syndromic orofacial clefts: based on 15,094,978 Chinese perinatal infants[J]. Oncotarget, 2018, 9(17): 13981-13990.
|
3 |
Leslie EJ, Marazita ML. Genetics of cleft lip and cleft palate[J]. Am J Med Genet C Semin Med Genet, 2013, 163C(4): 246-258.
|
4 |
Vijayan V, Ummer R, Weber R, et al. Association of WNT pathway genes with nonsyndromic cleft lip with or without cleft palate[J]. Cleft Palate Craniofac J, 2018, 55(3): 335-341.
|
5 |
Swibel Rosenthal LH, Walsh K, Thompson DM. Velopha-ryngeal incompetence: role in paediatric swallowing de-ficits[J]. Curr Opin Otolaryngol Head Neck Surg, 2018, 26(6): 356-366.
|
6 |
Zeraatkar M, Ajami S, Nadjmi N, et al. A qualitative study of children’s quality of life in the context of living with cleft lip and palate[J].Pediatric Health Med Ther, 2019, 10: 13-20.
|
7 |
俞立英, 周艺, 吴斌, 等. 22例先天性腭咽功能不全的临床分析[J]. 中国临床医学, 2004, 11(1): 97-99.
|
|
Yu LY, Zhou Y, Wu B, et al. Clinical analysis of 22 cases of patients with congenital velopharyngeal insufficiency[J]. Chin J Clin Med, 2004, 11(1): 97-99.
|
8 |
Samaan G, Yugo D, Rajagopalan S, et al. Foxn3 is essential for craniofacial development in mice and a putative candidate involved in human congenital craniofacial defects[J]. Biochem Biophys Res Commun, 2010, 400(1):60-65.
|
9 |
张蓉, 薛振恂. 维吾尔族先天性唇腭裂婴儿的病因病例对照研究[J]. 中国美容医学, 2003, 12(2): 176-179.
|
|
Zhang R, Xue ZX. Case-control study of uygur babies with cleft lip and palate[J]. Chin J Aesthet Med, 2003, 12(2): 176-179.
|
10 |
赵志强, 多力昆·吾甫尔. 非综合征型唇腭裂与成纤维细胞生长因子3基因相关性的研究[J]. 中国美容整形外科杂志, 2018, 29(8): 482-484.
|
|
Zhao ZQ, Duolikun·Wufuer. Study on association of fibroblast growth factor 3 gene polymorphism with non-syndromic cleft lip and palate[J]. Chin J Aesthet Plast Surg, 2018, 29(8): 482-484.
|
11 |
Soleymani M, Ebadifar A, Khosravi M, et al. Association of rs2013162 and rs2235375 polymorphisms in IR-F6 gene with susceptibility to non-syndromic cleft lip and palate[J]. Avicenna J Med Biotechnol, 2022, 14(2): 181-185.
|
12 |
Nasroen SL, Maskoen AM, Soedjana H, et al. IRF6 rs-2235371 as a risk factor for non-syndromic cleft palate only among the Deutero-Malay race in Indonesia and its effect on the IRF6 mRNA expression level[J]. Dent Med Probl, 2022, 59(1): 59-65.
|
13 |
Hong JW, Yu Y, Wang LS, et al. BMP4 Regulates EMT to be involved in non-syndromic cleft lip with or without palate[J]. Cleft Palate Craniofac J, 2023, 60(11): 1462-1473.
|
14 |
Bahrami R, Dastgheib SA, Niktabar SM, et al. Association of BMP4 rs17563 polymorphism with nonsyndro-mic cleft lip with or without cleft palate risk: literature review and comprehensive meta-analysis[J]. Fetal Pe-diatr Pathol, 2021, 40(4): 305-319.
|
15 |
Khan MI, Cs P, Srinath N. Role of PAX7 gene rs766325 and rs4920520 polymorphisms in the etiology of non-syndromic cleft lip and palate: a genetic study[J]. Glob Med Genet, 2022, 9(3): 208-211.
|
16 |
Imani MM, Rahimi R, Sadeghi M. Linkage and association of PAX7 polymorphisms (rs742071, rs766325, and rs4920520) with the risk of non-syndromic cleft lip with/without cleft palate: a systematic review and meta-analysis[J]. Meta Gene, 2022, 31: 101007.
|
17 |
张庭婷. 某医院近10年非综合征型唇腭裂临床资料回顾性分析[D]. 遵义: 遵义医科大学, 2021.
|
|
Zhang TT. Retrospective analysis of clinical data of patients with non-syndromic cleft lip with or without pa-late in recent 10 years in a hospital[D]. Zunyi: Zunyi Me-dical University, 2021.
|
18 |
Kaestner KH, Knochel W, Martinez DE. Unified nomenclature for the winged helix/forkhead transcription factors[J]. Genes Dev, 2000, 14(2): 142-146.
|
19 |
Worley ML, Patel KG, Kilpatrick LA. Cleft lip and palate[J]. Clin Perinatol, 2018, 45(4): 661-678.
|
20 |
Li W, Zhang Z, Liu X, et al. The FOXN3-NEAT1-SIN-3A repressor complex promotes progression of hormonally responsive breast cancer[J]. J Clin Invest, 2017, 127(9): 3421-3440.
|
21 |
何航, 张蕊, 李艳. FOXN3蛋白在恶性肿瘤中的研究进展[J]. 现代肿瘤医学, 2018, 26(5): 804-809.
|
|
He H, Zhang R, Li Y. Research progress of FOXN3 in malignant neoplasms[J]. J Modern Oncol, 2018, 26(5): 804-809.
|
22 |
Schuff M, Rössner A, Wacker SA, et al. FoxN3 is required for craniofacial and eye development of Xenopus laevis[J]. Dev Dyn, 2007, 236(1): 226-239.
|
23 |
Rinn JL, Chang HY. Genome regulation by long noncoding RNAs[J]. Annu Rev Biochem, 2012, 81: 145-166.
|
24 |
West JA, Davis CP, Sunwoo H, et al. The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites[J]. Mol Cell, 2014, 55(5): 791-802.
|
25 |
Gao Y, Zang Q, Song H, et al. Comprehensive analysis of differentially expressed profiles of non‑coding RNAs in peripheral blood and ceRNA regulatory networks in non-syndromic orofacial clefts[J]. Mol Med Rep, 2019, 20(1): 513-528.
|
26 |
Tang J, Lian SB, Bai Y, et al. Comprehensive analysis of plasma miRNA and related ceRNA network in non-syndromic cleft lip and/or palate[J]. Int J Pediatr Otorhinolaryngol, 2022, 162: 111306.
|
27 |
Yu W, Diao Y, Zhang Y, et al. Bioinformatic analysis of FOXN3 expression and prognostic value in pancreatic cancer[J]. Front Oncol, 2022, 12: 1008100.
|
28 |
Ding JF, Zhou Y, Xu SS, et al. Epigenetic control of LncRNA NEAT1 enables cardiac fibroblast pyroptosis and cardiac fibrosis[J]. Eur J Pharmacol, 2023, 938: 175398.
|
29 |
Chen Y, Huang C, Duan ZB, et al. LncRNA NEAT1 accelerates renal fibrosis progression via targeting miR-31 and modulating RhoA/ROCK signal pathway[J]. Am J Physiol Cell Physiol, 2023, 324(2): C292-C306.
|
30 |
Zhang D, Zhou Y, Huang R, et al. LncRNA affects epigenetic reprogramming of porcine embryo development by regulating global epigenetic modification and the downstream gene SIN3A[J]. Front Physiol, 2022, 13: 971965.
|