West China Journal of Stomatology ›› 2024, Vol. 42 ›› Issue (2): 214-226.doi: 10.7518/hxkq.2024.2023275
• Clinical Research • Previous Articles Next Articles
Yang Haoran1,2(), Chen Yuxiang1,2, Zhao Anna1,2, Cheng Tingting1,2, Zhou Jianzhong1,2, Li Ziliang1,2(
)
Received:
2023-08-24
Revised:
2024-01-17
Online:
2024-04-01
Published:
2024-03-26
Contact:
Li Ziliang
E-mail:2360495671@qq.com;1752114604@qq.com
Supported by:
CLC Number:
Yang Haoran, Chen Yuxiang, Zhao Anna, Cheng Tingting, Zhou Jianzhong, Li Ziliang. Construction of a diagnostic model based on random forest and artificial neural network for peri-implantitis[J]. West China Journal of Stomatology, 2024, 42(2): 214-226.
Add to citation manager EndNote|Ris|BibTeX
1 | Salvi GE, Cosgarea R, Sculean A. Prevalence and me-chanisms of peri-implant diseases[J]. J Dent Res, 2017, 96(1): 31-37. |
2 | Caton JG, Armitage G, Berglundh T, et al. A new classification scheme for periodontal and peri-implant disea-ses and conditions—Introduction and key changes from the 1999 classification[J]. J Periodontol, 2018, 89 (): S1-S8. |
3 | Sahrmann P, Gilli F, Wiedemeier DB, et al. The micro-biome of peri-implantitis: a systematic review and meta-analysis[J]. Microorganisms, 2020, 8(5): 661. |
4 | Derks J, Tomasi C. Peri-implant health and disease. A sy-stematic review of current epidemiology[J]. J Clin Perio-dontol, 2015, 42 : S158-S171. |
5 | Schwarz F, Jepsen S, Obreja K, et al. Surgical therapy of peri-implantitis[J]. Periodontol 2000, 2022, 88(1): 145-181. |
6 | Listl S, Frühauf N, Dannewitz B, et al. Cost-effectiveness of non-surgical peri-implantitis treatments[J]. J Clin Periodontol, 2015, 42(5): 470-477. |
7 | Petković-Curcin A, Matić S, Vojvodić D, et al. Cytoki-nes in pathogenesis of peri-implantitis[J]. Vojnosanit Pre-gl, 2011, 68(5): 435-440. |
8 | Corrêa MG, Pimentel SP, Ribeiro FV, et al. Host respon-se and peri-implantitis[J]. Braz Oral Res, 2019, 33(): e066. |
9 | Insua A, Monje A, Wang HL, et al. Basis of bone meta-bolism around dental implants during osseointegration and peri-implant bone loss[J]. J Biomed Mater Res A, 2017, 105(7): 2075-2089. |
10 | Fragkioudakis I, Tseleki G, Doufexi AE, et al. Current concepts on the pathogenesis of peri-implantitis: a narrative review[J]. Eur J Dent, 2021, 15(2): 379-387. |
11 | Che D, Liu Q, Rasheed K, et al. Decision tree and ensemble learning algorithms with their applications in bioinformatics[J]. Adv Exp Med Biol, 2011, 696: 191-199. |
12 | Jiřík M, Moulisová V, Hlaváč M, et al. Artificial neural networks and computer vision in medicine and surgery[J]. Rozhl Chir, 2022, 101(12): 564-570. |
13 | Ma CL, Yuan YB. A novel support vector machine with globality-locality preserving[J]. Sci World J, 2014, 2014: 872697. |
14 | Pfeifer B, Holzinger A, Schimek MG. Robust random forest-based all-relevant feature ranks for trustworthy AI[J]. Stud Health Technol Inform, 2022, 294: 137-138. |
15 | Lindon JC, Holmes E, Bollard ME, et al. Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis[J]. Biomarkers, 2004, 9(1): 1-31. |
16 | Tian Y, Yang J, Lan M, et al. Construction and analysis of a joint diagnosis model of random forest and artificial neural network for heart failure[J]. Aging (Albany NY), 2020, 12(24): 26221-26235. |
17 | Sun D, Peng H, Wu Z. Establishment and analysis of a combined diagnostic model of Alzheimer’s disease with random forest and artificial neural network[J]. Front Aging Neurosci, 2022, 14: 921906. |
18 | Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7): e47. |
19 | Lai D, Ma W, Wang J, et al. Immune infiltration and diagnostic value of immune-related genes in periodontitis using bioinformatics analysis[J]. J Periodontal Res, 2023, 58(2): 369-380. |
20 | Gene Ontology Consortium. The Gene Ontology resour-ce: enriching a GOld mine[J]. Nucleic Acids Res, 2021, 49(D1): D325-D334. |
21 | Kanehisa M, Furumichi M, Sato Y, et al. KEGG: integrating viruses and cellular organisms[J]. Nucleic Acids Res, 2021, 49(D1): D545-D551. |
22 | Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucleic Acids Res, 2021, 49(D1): D605-D612. |
23 | Otasek D, Morris JH, Bouças J, et al. Cytoscape automation: empowering workflow-based network analysis[J]. Genome Biol, 2019, 20(1): 185. |
24 | Chin CH, Chen SH, Wu HH, et al. cytoHubba: identifying hub objects and sub-networks from complex interactome[J]. BMC Syst Biol, 2014, 8(): S11. |
25 | Montanez A. SDV: an open source library for synthetic data generation[D]. Cambridge: Massachusetts Institute of Technology, 2018. |
26 | Zhou G, Soufan O, Ewald J, et al. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis[J]. Nucleic Acids Res, 2019, 47(W1): W234-W241. |
27 | Baseri M, Radmand F, Hamedi R, et al. Immunological aspects of dental implant rejection[J]. Biomed Res Int, 2020, 2020: 7279509. |
28 | Fretwurst T, Garaicoa-Pazmino C, Nelson K, et al. Characterization of macrophages infiltrating peri-implantitis lesions[J]. Clin Oral Implants Res, 2020, 31(3): 274-281. |
29 | Li Y, Ling J, Jiang Q. Inflammasomes in alveolar bone loss[J]. Front Immunol, 2021, 12: 691013. |
30 | Kensara A, Hefni E, Williams MA, et al. Microbiological profile and human immune response associated with peri-implantitis: a systematic review[J]. J Prosthodont, 2021, 30(3): 210-234. |
31 | Deng S, Hu Y, Zhou J, et al. TLR4 mediates alveolar bone resorption in experimental peri-implantitis through regulation of CD45+ cell infiltration, RANKL/OPG ratio, and inflammatory cytokine production[J]. J Perio-dontol, 2020, 91(5): 671-682. |
32 | Pan K, Hu Y, Wang Y, et al. RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling[J]. Int J Implant Dent, 2020, 6(1): 15. |
33 | Zhang Q, Liu J, Ma L, et al. Wnt5a is involved in LOX-1 and TLR4 induced host inflammatory response in peri-implantitis[J]. J Periodontal Res, 2020, 55(2): 199-208. |
34 | Vacchini A, Mortier A, Proost P, et al. Differential effects of posttranslational modifications of CXCL8/interleukin-8 on CXCR1 and CXCR2 internalization and signaling properties[J]. Int J Mol Sci, 2018, 19(12): 3768. |
35 | Gabellini C, Trisciuoglio D, Desideri M, et al. Functio-nal activity of CXCL8 receptors, CXCR1 and CXCR2, on human malignant melanoma progression[J]. Eur J Cancer, 2009, 45(14): 2618-2627. |
36 | Tong H, Ke JQ, Jiang FZ, et al. Tumor-associated macrophage-derived CXCL8 could induce ERα suppression via HOXB13 in endometrial cancer[J]. Cancer Lett, 2016, 376(1): 127-136. |
37 | Zhang X, Wang Z, Hu L, et al. Identification of potential genetic biomarkers and target genes of peri-implantitis u-sing bioinformatics tools[J]. Biomed Res Int, 2021, 2021: 1759214. |
38 | Aleksandrowicz P, Brzezińska-Błaszczyk E, Kozłowska E, et al. Analysis of IL-1β, CXCL8, and TNF-α levels in the crevicular fluid of patients with periodontitis or healthy implants[J]. BMC Oral Health, 2021, 21(1): 120. |
39 | Glaría E, Valledor AF. Roles of CD38 in the immune response to infection[J]. Cells, 2020, 9(1): 228. |
40 | Chen D, Wu X, Liu Q, et al. Memory B cell as an indicator of peri-implantitis status: a pilot study[J]. Int J Oral Maxillofac Implants, 2021, 36(1): 86-93. |
41 | Munde EO, Okeyo WA, Raballah E, et al. Association between Fcγ receptor ⅡA, ⅢA and ⅢB genetic polymorphisms and susceptibility to severe malaria anemia in children in western Kenya[J]. BMC Infect Dis, 2017, 17(1): 289. |
42 | Elmer BM, Swanson KA, Bangari DS, et al. Gene deli-very of a modified antibody to Aβ reduces progression of murine Alzheimer’s disease[J]. PLoS One, 2019, 14(12): e0226245. |
43 | Saremi L, Esmaeilzadeh E, Ghorashi T, et al. Association of Fc gamma-receptor genes polymorphisms with chronic periodontitis and Peri-Implantitis[J]. J Cell Biochem, 2019, 120(7): 12010-12017. |
44 | Taylor JP, Tse HM. The role of NADPH oxidases in infectious and inflammatory diseases[J]. Redox Biol, 2021, 48: 102159. |
45 | Denson LA, Jurickova I, Karns R, et al. Clinical and genomic correlates of neutrophil reactive oxygen species production in pediatric patients with Crohn’s disease[J]. Gastroenterology, 2018, 154(8): 2097-2110. |
46 | Ivetic A. A head-to-tail view of L-selectin and its impact on neutrophil behaviour[J]. Cell Tissue Res, 2018, 371(3): 437-453. |
47 | Siddiqui K, George TP, Mujammami M, et al. The association of cell adhesion molecules and selectins (VCAM-1, ICAM-1, E-selectin, L-selectin, and P-selectin) with microvascular complications in patients with type 2 diabetes: a follow-up study[J]. Front Endocrinol (Lausan-ne), 2023, 14: 1072288. |
48 | Xia S, Qu J, Jia H, et al. Overexpression of Forkhead box C1 attenuates oxidative stress, inflammation and a-poptosis in chronic obstructive pulmonary disease[J]. Li-fe Sci, 2019, 216: 75-84. |
49 | Wang J, Li W, Zheng X, et al. Research progress on the forkhead box C1[J]. Oncotarget, 2017, 9(15): 12471-12478. |
50 | Ji Z, Chen S, Cui J, et al. Oct4-dependent FoxC1 acti-vation improves the survival and neovascularization of mesenchymal stem cells under myocardial ischemia[J]. Stem Cell Res Ther, 2021, 12(1): 483. |
51 | Aktar A, Heit B. Role of the pioneer transcription fac-tor GATA2 in health and disease[J]. J Mol Med (Berl), 2023, 101(10): 1191-1208. |
52 | Takai J, Shimada T, Nakamura T, et al. Gata2 heterozygous mutant mice exhibit reduced inflammatory respon-ses and impaired bacterial clearance[J]. iScience, 2021, 24(8): 102836. |
53 | Xie M, Li Z, Li X, et al. Identifying crucial biomarkers in peripheral blood of schizophrenia and screening therapeutic agents by comprehensive bioinformatics analysis[J]. J Psychiatr Res, 2022, 152: 86-96. |
54 | Mitchell JP, Carmody RJ. NF-κB and the Transcriptio-nal Control of Inflammation[J]. Int Rev Cell Mol Biol, 2018, 335: 41-84. |
55 | Cao N, Liu X, Hou Y, et al. 18-α-glycyrrhetinic acid alleviates oxidative damage in periodontal tissue by modulating the interaction of Cx43 and JNK/NF-κB pathways[J]. Front Pharmacol, 2023, 14: 1221053. |
56 | Teng H, Chen S, Fan K, et al. Dexamethasone liposomes alleviate osteoarthritis in miR-204/-211-deficient mice by repolarizing synovial macrophages to M2 phenotypes[J]. Mol Pharm, 2023, 20(8): 3843-3853. |
57 | Zhang N, Zhang RF, Zhang AN, et al. MiR-204 promotes fracture healing via enhancing cell viability of osteoblasts[J]. Eur Rev Med Pharmacol Sci, 2018, 22(1 ): 29-35. |
58 | Li N, Guo X, Liu L, et al. Molecular mechanism of miR-204 regulates proliferation, apoptosis and autophagy of cervical cancer cells by targeting ATF2[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 2529-2535. |
59 | Grieco FA, Schiavo AA, Brozzi F, et al. The miRNAs miR-211-5p and miR-204-5p modulate ER stress in human beta cells[J]. J Mol Endocrinol, 2019, 63(2): 139-149. |
60 | Ye G, Wang P, Xie Z, et al. IRF2-mediated upregulation of lncRNA HHAS1 facilitates the osteogenic differentiation of bone marrow-derived mesenchymal stem cells by acting as a competing endogenous RNA[J]. Clin Transl Med, 2021, 11(6): e429. |
61 | Rigatti SJ. Random forest[J]. J Insur Med, 2017, 47(1): 31-39. |
62 | Carleo G, Troyer M. Solving the quantum many-body problem with artificial neural networks[J]. Science, 2017, 355(6325): 602-606. |
63 | Arji G, Safdari R, Rezaeizadeh H, et al. A systematic literature review and classification of knowledge discove-ry in traditional medicine[J]. Comput Methods Programs Biomed, 2019, 168: 39-57. |
[1] | Yan Xinmiao, Sun Taolan, Lu Yuhang, Tan Xin, Wang Zhuo, Li Miaojing. Prediction model of dental caries in 12-year-old children in Sichuan Province based on machine learning [J]. West China Journal of Stomatology, 2023, 41(6): 686-693. |
[2] | Su Wenqi, Li Jingwen, Jiang Lishan, Cui Wenjie, Zhao Yang, Li Houxuan.. In vitro research of oral microscope-assisted implant surface decontamination [J]. West China Journal of Stomatology, 2023, 41(3): 350-355. |
[3] | Zeng Xiaoli, Li Shengjiao, Shan Zhengnan, Yin Junhao, Jiang Jirui, Zheng Zhanglong, Li Jia. Identification of hub genes and transcription factors involved in periodontitis on the basis of multiple microarray analysis [J]. West China Journal of Stomatology, 2021, 39(6): 633-641. |
[4] | Song Yingliang, Zhang Sijia. Insights into peri-implantitis and its prevention [J]. West China Journal of Stomatology, 2020, 38(5): 479-483. |
[5] | Yang Lisa,Shi Congyu,Liang Yuhao,Liu Tong,Hou Xiaoru,Tian Xudong,Wang Xiaoyi. Bioinformatics analysis of programmed cell death ligand 1 co-expression genes and their regulatory network in head and neck squamous cell carcinoma [J]. West China Journal of Stomatology, 2019, 37(5): 516-520. |
[6] | Lei Cheng,Haiyang Yu,Yao Wu,Chongyun Bao,Bangcheng Yang,Yi Man,Yao Sun,Xiaoli Yan,Xuedong Zhou. A review of peri-implant microbiology [J]. West China Journal of Stomatology, 2019, 37(1): 7-12. |
[7] | Chuanhua Li, Zhifeng Wang, Lina Zhu, Xin Fan, Jing Lan. Experimental research on Arginine-gingipain A gene vaccine from Porphyromonas gingivalis that prevents peri-implantitis in Beagle dogs [J]. West China Journal of Stomatology, 2018, 36(1): 76-81. |
[8] | Wu Hao, Liu Hongchen, E Lingling, Liu Na, Zhang Bo, Gao Yuxuan, Feng Lin. Effect of the peri-implantitis on the biological function of osteoblasts obtained from the mandibles [J]. West China Journal of Stomatology, 2014, 32(2): 130-133. |
[9] | GUO Li-hong1, SHI Jun-nan2. Sequencing and Bioinformatical Analysis of Virulent Strain-specific DNA Fragments from Streptococcus mutans [J]. West China Journal of Stomatology, 2006, 24(06): 541-545. |
[10] | ZOUDe-rong, ZHUHong, QUXiao-hui.. Detection and Measurement of Interleukin-8 in Peri-implant Crevicular Fluid [J]. West China Journal of Stomatology, 2005, 23(04): 292-294. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||