华西口腔医学杂志 ›› 2024, Vol. 42 ›› Issue (6): 689-698.doi: 10.7518/hxkq.2024.2024262
• 专家论坛 • 下一篇
收稿日期:
2024-07-14
修回日期:
2024-08-03
出版日期:
2024-12-01
发布日期:
2024-11-29
通讯作者:
邹多宏
E-mail:dentistxr@126.com;zouduohongyy@163.com
作者简介:
基金资助:
Xu Rui1(), Pan Zhao2, Zou Duohong3(
)
Received:
2024-07-14
Revised:
2024-08-03
Online:
2024-12-01
Published:
2024-11-29
Contact:
Zou Duohong
E-mail:dentistxr@126.com;zouduohongyy@163.com
Supported by:
摘要:
外伤、手术、疾病以及化学刺激等造成的口腔内创伤为患者带来疼痛并增加感染风险。有效的创面保护及修复对提高患者生活质量和维护口腔健康至关重要。敷贴材料通过阻隔创面与口腔环境,为创面提供理想的愈合条件。然而在口腔高度湿润且微生物富集的动态环境下,伤口敷贴如何保持性能稳定仍面临巨大挑战。水凝胶因其良好的生物安全性以及性能多样性展现出广阔的应用前景,成为解决口腔创面保护及修复难题的研究热点。本文探讨水凝胶敷贴克服口腔特殊环境实现持久黏附及功能发挥的设计策略,以期为理想的口腔创面屏障材料设计提供新思路。
中图分类号:
许瑞, 潘钊, 邹多宏. 基于口腔特殊环境的水凝胶创面敷贴设计策略[J]. 华西口腔医学杂志, 2024, 42(6): 689-698.
Xu Rui, Pan Zhao, Zou Duohong. Design strategy of hydrogel wound dressings based on oral special environment[J]. West China Journal of Stomatology, 2024, 42(6): 689-698.
1 | Politis C, Schoenaers J, Jacobs R, et al. Wound healing problems in the mouth[J]. Front Physiol, 2016, 7: 507. |
2 | Ko KI, Sculean A, Graves DT. Diabetic wound healing in soft and hard oral tissues[J]. Transl Res, 2021, 236: 72-86. |
3 | Ding Y, Zhu Z, Zhang X, et al. Novel functional dres-sing materials for intraoral wound care[J]. Adv Healthc Mater, 2024. doi: 10.1002/adhm.202400912 . |
4 | Dawes C, Wong DTW. Role of saliva and salivary diagnostics in the advancement of oral health[J]. J Dent Res, 2019, 98(2): 133-141. |
5 | Hatcher DC. Anatomy of the mandible, temporomandi-bular joint, and dentition[J]. Neuroimaging Clin N Am, 2022, 32(4): 749-761. |
6 | Baker JL, Mark Welch JL, Kauffman KM, et al. The oral microbiome: diversity, biogeography and human health[J]. Nat Rev Microbiol, 2024, 22(2): 89-104. |
7 | Jia B, Zhang B, Li J, et al. Emerging polymeric mate-rials for treatment of oral diseases: design strategy towards a unique oral environment[J]. Chem Soc Rev, 2024, 53(7): 3273-3301. |
8 | Huang M, Huang Y, Liu H, et al. Hydrogels for the treatment of oral and maxillofacial diseases: current resear-ch, challenges, and future directions[J]. Biomater Sci, 2022, 10(22): 6413-6446. |
9 | Buwalda SJ, Boere KW, Dijkstra PJ, et al. Hydrogels in a historical perspective: from simple networks to smart materials[J]. J Control Release, 2014, 190: 254-273. |
10 | Li S, Dong S, Xu W, et al. Antibacterial hydrogels[J]. Adv Sci, 2018, 5: 1700527. |
11 | Yang J, Zhang YS, Yue K, et al. Cell-laden hydrogels for osteochondral and cartilage tissue engineering[J]. Acta Biomater, 2017, 57: 1-25. |
12 | Roorda WE, Boddé HE, De Boer AG, et al. Synthetic hydrogels as drug delivery systems[J]. Pharm Weekbl Sci, 1986, 8(3): 165-189. |
13 | Anseth KS, Bowman CN, Brannon-Peppas L. Mechanical properties of hydrogels and their experimental determination[J]. Biomaterials, 1996, 17(17): 1647-1657. |
14 | Francis L, Greco KV, Boccaccini AR, et al. Development of a novel hybrid bioactive hydrogel for future cli-nical applications[J]. J Biomater Appl, 2018, 33(3): 447-465. |
15 | Catoira MC, Fusaro L, Di Francesco D, et al. Overview of natural hydrogels for regenerative medicine applications[J]. J Mater Sci Mater Med, 2019, 30(10): 115. |
16 | Spang MT, Christman KL. Extracellular matrix hydrogel therapies: in vivo applications and development[J]. Acta Biomater, 2018, 68: 1-14. |
17 | Bao Z, Xian C, Yuan Q, et al. Natural polymer-based hydrogels with enhanced mechanical performances: preparation, structure, and property[J]. Adv Healthc Mater, 2019, 8(17): e1900670. |
18 | Kolawole OM, Lau WM, Khutoryanskiy VV. Methacrylated chitosan as a polymer with enhanced mucoadhesive properties for transmucosal drug delivery[J]. Int J Pharm, 2018, 550(1/2): 123-129. |
19 | Zhu Z, Guan Z, Jia S, et al. Au@Pt nanoparticle encapsulated target-responsive hydrogel with volumetric bar-chart chip readout for quantitative point-of-care testing[J]. Angew Chem Int Ed Engl, 2014, 53(46): 12503-12507. |
20 | Dimatteo R, Darling NJ, Segura T. In situ forming injec-table hydrogels for drug delivery and wound repair[J]. Adv Drug Deliv Rev, 2018, 127: 167-184. |
21 | Bernkop-Schnürch A. Thiomers: a new generation of mucoadhesive polymers[J]. Adv Drug Deliv Rev, 2005, 57(11): 1569-1582. |
22 | Dong Y, Pang H, Yang HB, et al. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission[J]. Angew Chem Int Ed Engl, 2013, 52(30): 7800-7804. |
23 | Chatterjee B, Amalina N, Sengupta P, et al. Mucoadhesive polymers and their mode of action: a recent update[J]. J Appl Pharm Sci, 2017, 7: 195-203. |
24 | Jelkmann M, Bonengel S, Menzel C, et al. New perspectives of starch: synthesis and in vitro assessment of no-vel thiolated mucoadhesive derivatives[J]. Int J Pharm, 2018, 546(1/2): 70-77. |
25 | Laffleur F. Mucoadhesive polymers for buccal drug delivery[J]. Drug Dev Ind Pharm, 2014, 40(5): 591-598. |
26 | Yang J, Bai R, Chen B, et al. Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics[J]. Adv Funct Mater, 2020, 30(2): 1901693. |
27 | Wuttig M, Deringer VL, Gonze X, et al. Incipient me-tals: functional materials with a unique bonding mechanism[J]. Adv Mater, 2018, 30(51): e1803777. |
28 | Ma S, Wu Y, Zhou F. Bioinspired synthetic wet adhesives: from permanent bonding to reversible regulation[J]. Curr Opin Colloid Interface Sci, 2020, 47: 84-98. |
29 | Morales JO, Brayden DJ. Buccal delivery of small molecules and biologics: of mucoadhesive polymers, films, and nanoparticles[J]. Curr Opin Pharmacol, 2017, 36: 22-28. |
30 | Salamat-Miller N, Chittchang M, Johnston TP. The use of mucoadhesive polymers in buccal drug delivery[J]. Adv Drug Deliv Rev, 2005, 57(11): 1666-1691. |
31 | Steck J, Kim J, Yang J, et al. Topological adhesion. I. Rapid and strong topohesives[J]. Extreme Mech Lett, 2020, 39: 100803. |
32 | Daristotle JL, Zaki ST, Lau LW, et al. Pressure-sensitive tissue adhesion and biodegradation of viscoelastic po-lymer blends[J]. ACS Appl Mater Interfaces, 2020, 12(14): 16050-16057. |
33 | Sennakesavan G, Mostakhdemin M, Dkhar LK, et al. Acrylic acid/acrylamide based hydrogels and its pro-perties—A review[J]. Polym Degrad Stab, 2020, 180: 109308. |
34 | Macdougall LJ, Anseth K. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(α- hydroxy acid) diacrylate macromers[J]. Macromolecules, 2020, 53(7): 2295-2298. |
35 | Zhang X, Li Z, Yang P, et al. Polyphenol scaffolds in tissue engineering[J]. Mater Horiz, 2021, 8(1): 145-167. |
36 | Hong S, Pirovich D, Kilcoyne A, et al. Supramolecular metallo-bioadhesive for minimally invasive use[J]. Adv Mater, 2016, 28(39): 8675-8680. |
37 | Lee HA, Park E, Lee H. Polydopamine and its derivati-ve surface chemistry in material science: a focused review for studies at KAIST[J]. Adv Mater, 2020, 32(35): e1907505. |
38 | Yang J, Saggiomo V, Velders AH, et al. Reaction pa-thways in catechol/primary amine mixtures: a window on crosslinking chemistry[J]. PLoS One, 2016, 11(12): e0166490. |
39 | Hu H, Xu FJ. Rational design and latest advances of polysaccharide-based hydrogels for wound healing[J]. Biomater Sci, 2020, 8(8): 2084-2101. |
40 | Berradi A, Aziz F, Achaby ME, et al. A comprehensive review of polysaccharide-based hydrogels as promising biomaterials[J]. Polymers (Basel), 2023, 15(13): 2908. |
41 | Hu S, Pei X, Duan L, et al. A mussel-inspired film for adhesion to wet buccal tissue and efficient buccal drug delivery[J]. Nat Commun, 2021, 12(1): 1689. |
42 | Boda SK, Fischer NG, Ye Z, et al. Dual oral tissue adhesive nanofiber membranes for pH-responsive delivery of antimicrobial peptides[J]. Biomacromolecules, 2020, 21(12): 4945-4961. |
43 | Liu H, Liu C, Shao D, et al. A tough Janus hydrogel patch with strong wet adhesion and self-debonding for oral ulcer treatment[J]. Chem Mater, 2024, 36(10): 4976-4989. |
44 | Cui C, Mei L, Wang D, et al. A self-stabilized and water-responsive deliverable coenzyme-based polymer binary elastomer adhesive patch for treating oral ulcer[J]. Nat Commun, 2023, 14(1): 7707. |
45 | Ryu JH, Choi JS, Park E, et al. Chitosan oral patches inspired by mussel adhesion[J]. J Control Release, 2020, 317: 57-66. |
46 | Xing J, Ding Y, Zheng X, et al. Barnacle-Inspired ro-bust and aesthetic Janus patch with instinctive wet adhesive for oral ulcer treatment[J]. Chem Eng J, 2022, 444: 136580. |
47 | Bao BK, Zeng QM, Li K, et al. Rapid fabrication of phy-sically robust hydrogels[J]. Nat Mater, 2023, 22: 1253-1260. |
48 | Zaragoza J, Fukuoka S, Kraus M, et al. Exploring the role of nanoparticles in enhancing mechanical properties of hydrogel nanocomposites[J]. Nanomaterials, 2018, 8(11): 882. |
49 | Montazerian H, Davoodi E, Baidya A, et al. Bio-macromolecular design roadmap towards tough bioadhesives[J]. Chem Soc Rev, 2022, 51(21): 9127-9173. |
50 | Zhang X, Zhang R, Wu S, et al. Physically and chemically dual-crosslinked hydrogels with superior mechanical properties and self-healing behavior[J]. New J Chem, 2020, 44(23): 9903-9911. |
51 | Zhu J, Li Y, Xie W, et al. Low-swelling adhesive hydrogel with rapid hemostasis and potent anti-inflammatory capability for full-thickness oral mucosal defect repair[J]. ACS Appl Mater Interfaces, 2022, 14(48): 53575-53592. |
52 | Yuan Y, Shen S, Fan D. A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing: shape adaptability, injectable self-hea-ling property and enhanced adhesion[J]. Biomaterials, 2021, 276: 120838. |
53 | Wu J, Pan Z, Zhao ZY, et al. Anti-swelling, robust, and adhesive extracellular matrix-mimicking hydrogel used as intraoral dressing[J]. Adv Mater, 2022, 34(20): e22-00115. |
54 | Ankareddi I, Brazel CS. Synthesis and characterization of grafted thermosensitive hydrogels for heating activa-ted controlled release[J]. Int J Pharm, 2007, 36(2): 241-247. |
55 | Zhang Y, Zhu W, Wang B, et al. A novel microgel and associated post-fabrication encapsulation technique of proteins[J]. J Control Release, 2005, 105(3): 260-268. |
56 | Huang D, Sun M, Bu Y, et al. Microcapsule-embedded hydrogel patches for ultrasound responsive and enhan-ced transdermal delivery of diclofenac sodium[J]. J Mater Chem B, 2019, 7(14): 2330-2337. |
57 | Kass LE, Nguyen J. Nanocarrier-hydrogel composite delivery systems for precision drug release[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2022, 14(2): e1756. |
58 | Babaladimath G, Badalamoole V. Magnetic nanopar-ticles embedded in pectin-based hydrogel for the sustained release of diclofenac sodium[J]. Polym Int, 2018, 67: 983-992. |
59 | Chan AW, Neufeld RJ. Tuneable semi-synthetic network alginate for absorptive encapsulation and controlled release of protein therapeutics[J]. Biomaterials, 2010, 31(34): 9040-9047. |
60 | Zhang L, Ma Y, Zhao C, et al. Synthesis of pH-responsive hydrogel thin films grafted on PCL substrates for protein delivery[J]. J Mater Chem B, 2015, 3(39): 7673-7681. |
61 | Shohraty F, Najafi Moghadam P, Fareghi A, et al. Synthesis and characterization of new pH-sensitive hydrogels based on poly(glycidyl methacrylate-co-maleic anhydride)[J]. Adv Polym Technol, 2018, 37(1): 120-125. |
62 | Mahkam M, Poorgholy N, Vakhshouri L. Synthesis and characterization of novel pH-sensitive hydrogels contai-ning ibuprofen pendents for colon-specific drug delivery[J]. Macromol Res, 2009, 17(9): 709-713. |
63 | Zhang Y, Ding J, Sun D, et al. Thermogel-mediated sustained drug delivery for in situ malignancy chemotherapy[J]. Mater Sci Eng C Mater Biol Appl, 2015, 49: 262-268. |
64 | Bastiancich C, Danhier P, Préat V, et al. Anticancer drug-loaded hydrogels as drug delivery systems for the local treatment of glioblastoma[J]. J Control Release, 2016, 243: 29-42. |
65 | Burakowska E, Zimmerman SC, Haag R. Photoresponsive crosslinked hyperbranched polyglycerols as smart nanocarriers for guest binding and controlled release[J]. Small, 2009, 5(19): 2199-2204. |
66 | Rai P, Mallidi S, Zheng X, et al. Development and ap-plications of photo-triggered theranostic agents[J]. Adv Drug Deliv Rev, 2010, 62(11): 1094-124. |
67 | Mahinroosta M, Jomeh Farsangi Z, Allahverdi A, et al. Hydrogels as intelligent materials: a brief review of synthesis, properties and applications[J]. Mater Today Chem, 2018, 8: 42-55. |
68 | Kalafatovic D, Nobis M, Son J, et al. MMP-9 triggered self-assembly of doxorubicin nanofiber depots halts tumor growth[J]. Biomaterials, 2016, 98: 192-202. |
69 | 白靖琨, 盛成乐, 张宇, 等. 酶响应型肽水凝胶及应用研究进展[J]. 生物化学与生物物理进展, 2016, 43(11): 1048-1060. |
Bai JK, Sheng CL, Zhang Y, et al. Progress in enzyme responsive peptide hydrogel and its applications[J]. Prog Biochem Biophy, 2016, 43(11): 1048-1060. | |
70 | Chen D, Zhang G, Li R, et al. Biodegradable, hydrogen peroxide, and glutathione dual responsive nanoparticles for potential programmable paclitaxel release[J]. J Am Chem Soc, 2018, 140(24): 7373-7376. |
71 | Moriyama K, Minamihata K, Wakabayashi R, et al. Enzymatic preparation of a redox-responsive hydrogel for encapsulating and releasing living cells[J]. Chem Commun (Camb), 2014, 50(44): 5895-5898. |
72 | Qi W, Dong N, Wu L, et al. Promoting oral mucosal wound healing using a DCS-RuB2A2 hydrogel based on a photoreactive antibacterial and sustained release of BMSCs[J]. Bioact Mater, 2022, 23: 53-68. |
73 | Tan X, Liu S, Hu X, et al. Near-infrared-enhanced dual enzyme-mimicking Ag-TiO2-x@alginate microspheres with antibactericidal and oxygeneration abilities to treat periodontitis[J]. ACS Appl Mater Interfaces, 2023, 15(1): 391-406. |
74 | Qu X, Guo X, Zhu T, et al. Microneedle patches contai-ning mesoporous polydopamine nanoparticles loaded wi-th triamcinolone acetonide for the treatment of oral mucositis[J]. Front Bioeng Biotechnol, 2023, 11: 1203709. |
75 | Zhang Z, Zhang Q, Gao S, et al. Antibacterial, anti-inflammatory and wet-adhesive poly(ionic liquid)-based oral patch for the treatment of oral ulcers with bacterial infection[J]. Acta Biomater, 2023, 166: 254-265. |
76 | Wen X, Xi K, Tang Y, et al. Immunized microspheres engineered hydrogel membrane for reprogramming ma-crophage and mucosal repair[J]. Small, 2023, 19(15): e2207030. |
77 | Xu S, Hu B, Dong T, et al. Alleviate periodontitis and its comorbidity hypertension using a nanoparticle-embedded functional hydrogel system[J]. Adv Healthc Mater, 2023, 12(20): e2203337. |
78 | Bao X, Zhao J, Sun J, et al. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease[J]. ACS Nano, 2018, 12(9): 8882-8892. |
[1] | 王剑, 杨林新. 氧化锆全冠的临床应用原则及新进展[J]. 华西口腔医学杂志, 2024, 42(2): 135-141. |
[2] | 薛晶, 杨壁娜. 复合树脂预热的研究现状和临床应用[J]. 华西口腔医学杂志, 2019, 37(6): 571-576. |
[3] | 魏焱 高原 吕锦 王斌 刘劲松. 氰基丙烯酸盐增强口腔石膏模型强度的研究[J]. 华西口腔医学杂志, 2014, 32(3): 229-232. |
[4] | 高燕 张富强 高建华. 稀土氧化物着色牙色四方多晶氧化锆陶瓷的机械性能研究[J]. 华西口腔医学杂志, 2012, 30(1): 73-76. |
[5] | 伊元夫 王晨 温宁 林勇钊 田杰谟. 牙科着色氧化钇稳定四方多晶氧化锆陶瓷的结构与性能[J]. 华西口腔医学杂志, 2009, 27(05): 473-478. |
[6] | 黄慧 魏斌 张富强 孙静 高濂. 两次烧结工艺对氧化锆陶瓷性能的影响[J]. 华西口腔医学杂志, 2008, 26(02): 175-178. |
[7] | 韩晓莉,廖运茂,巢永烈,孟玉坤. GI-Ⅱ型着色玻璃渗透后渗透陶瓷的性能测试[J]. 华西口腔医学杂志, 2002, 20(05): 364-366. |
[8] | 卢军霞,郭天文,王宝成,刘高杰. 激光焊接铸钛和锻钛机械性能的比较[J]. , 2000, 18(06): 0-. |
[9] | 汪竹平,王铎,高静,张武. 测量甲硝唑根管消毒控释系统药物释放度方法的评价[J]. , 1999, 17(02): 0-. |
[10] | 朱智敏,蒋小旭,毛祥彦. 低温强化处理对中高熔铸造合金机械性能的影响[J]. , 1997, 15(03): 0-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||