1 |
Ji S, Choi YS, Choi Y. Bacterial invasion and persistence: critical events in the pathogenesis of periodontitis[J]. J Periodontal Res, 2015, 50(5): 570-585.
|
2 |
Chapple IL, Matthews JB. The role of reactive oxygen and antioxidant species in periodontal tissue destruction[J]. Periodontol 2000, 2007, 43: 160-232.
|
3 |
Meyle J, Chapple I. Molecular aspects of the pathogenesis of periodontitis[J]. Periodontol 2000, 2015, 69(1): 7-17.
|
4 |
Laine ML, Crielaard W, Loos BG. Genetic susceptibility to periodontitis[J]. Periodontol 2000, 2012, 58(1): 37-68.
|
5 |
Bostanci N, Belibasakis GN. Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen[J]. FEMS Microbiol Lett, 2012, 333(1): 1-9.
|
6 |
Gölz L, Memmert S, Rath-Deschner B, et al. LPS from P. gingivalis and hypoxia increases oxidative stress in periodontal ligament fibroblasts and contributes to periodontitis[J]. Mediators Inflamm, 2014, 2014: 986264.
|
7 |
Kinane DF. Causation and pathogenesis of periodontal disease[J]. Periodontol 2000, 2001, 25: 8-20.
|
8 |
Wang PL, Azuma Y, Shinohara M, et al. Toll-like receptor 4-mediated signal pathway induced by Porphyromonas gingivalis lipopolysaccharide in human gingival fibroblasts[J]. Biochem Biophys Res Commun, 2000, 273(3): 1161-1167.
|
9 |
Trindade F, Oppenheim FG, Helmerhorst EJ, et al. Uncovering the molecular networks in periodontitis[J]. Proteomics Clin Appl, 2014, 8(9/10): 748-761.
|
10 |
Buckley CD, Pilling D, Lord JM, et al. Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation[J]. Trends Immunol, 2001, 22(4): 199-204.
|
11 |
Ara T, Kurata K, Hirai K, et al. Human gingival fibroblasts are critical in sustaining inflammation in periodontal disease[J]. J Periodontal Res, 2009, 44(1): 21-27.
|
12 |
Buckley CD. Why does chronic inflammation persist: an unexpected role for fibroblasts[J]. Immunol Lett, 2011, 138(1): 12-14.
|
13 |
Wang Q, Zhang B, Yu JL. Farrerol inhibits IL-6 and IL-8 production in LPS-stimulated human gingival fibroblasts by suppressing PI3K/AKT/NF-κB signaling pathway[J]. Arch Oral Biol, 2016, 62: 28-32.
|
14 |
Damgaard C, Kantarci A, Holmstrup P, et al. Porphyromonas gingivalis-induced production of reactive oxygen species, tumor necrosis factor-α, interleukin-6, CXCL8 and CCL2 by neutrophils from localized aggressive periodontitis and healthy donors: modulating actions of red blood cells and resolvin E1[J]. J Periodontal Res, 2017, 52(2): 246-254.
|
15 |
Yoon Y, Kim TJ, Lee JM, et al. SOD2 is upregulated in periodontitis to reduce further inflammation progression[J]. Oral Dis, 2018, 24(8): 1572-1580.
|
16 |
Zerilli T, Pyon EY. Sitagliptin phosphate: a DPP-4 inhibitor for the treatment of type 2 diabetes mellitus[J]. Clin Ther, 2007, 29(12): 2614-2634.
|
17 |
Satoh-Asahara N, Sasaki Y, Wada H, et al. A dipeptidyl peptidase-4 inhibitor, sitagliptin, exerts anti-inflammatory effects in type 2 diabetic patients[J]. Metabolism, 2013, 62(3): 347-351.
|
18 |
Jiang W, Wen D, Cheng Z, et al. Effect of sitagliptin, a DPP-4 inhibitor, against DENA-induced liver cancer in rats mediated via NF-κB activation and inflammatory cytokines[J]. J Biochem Mol Toxicol, 2018, 32(12): e22220.
|
19 |
Vaghasiya J, Sheth N, Bhalodia Y, et al. Sitagliptin protects renal ischemia reperfusion induced renal damage in diabetes[J]. Regul Pept, 2011, 166(1/2/3): 48-54.
|
20 |
Omoto S, Taniura T, Nishizawa T, et al. Anti-atherosclerotic effects of sitagliptin in patients with type 2 diabetes mellitus[J]. Diabetes Metab Syndr Obes, 2015, 8: 339-345.
|
21 |
Huang CY, Shih CM, Tsao NW, et al. Dipeptidyl peptidase-4 inhibitor improves neovascularization by increasing circulating endothelial progenitor cells[J]. Br J Pharmacol, 2012, 167(7): 1506-1519.
|
22 |
Hu X, Liu S, Liu X, et al. DPP-4 (CD26) inhibitor sitagliptin exerts anti-inflammatory effects on rat insulinoma (RINm) cells via suppressing NF-κB activation[J]. Endocrine, 2017, 55(3): 754-763.
|
23 |
Kang W, Hu Z, Ge S. Healthy and inflamed gingival fibroblasts differ in their inflammatory response to Porphyromonas gingivalis lipopolysaccharide[J]. Inflammation, 2016, 39(5): 1842-1852.
|
24 |
Imamura T. The role of gingipains in the pathogenesis of periodontal disease[J]. J Periodontol, 2003, 74(1): 111-118.
|
25 |
Jeng JH, Chan CP, Ho YS, et al. Effects of butyrate and propionate on the adhesion, growth, cell cycle kinetics, and protein synthesis of cultured human gingival fibroblasts[J]. J Periodontol, 1999, 70(12): 1435-1442.
|
26 |
Van Dyke TE, Serhan CN. Resolution of inflammation: a new paradigm for the pathogenesis of periodontal diseases[J]. J Dent Res, 2003, 82(2): 82-90.
|
27 |
Makdissi A, Ghanim H, Vora M, et al. Sitagliptin exerts an antinflammatory action[J]. J Clin Endocrinol Metab, 2012, 97(9): 3333-3341.
|
28 |
Matsubara J, Sugiyama S, Sugamura K, et al. A dipeptidyl peptidase-4 inhibitor, des-fluoro-sitagliptin, improves endothelial function and reduces atherosclerotic lesion formation in apolipoprotein E-deficient mice[J]. J Am Coll Cardiol, 2012, 59(3): 265-276.
|
29 |
Esposito G, Cappetta D, Russo R, et al. Sitagliptin reduces inflammation, fibrosis and preserves diastolic function in a rat model of heart failure with preserved ejection fraction[J]. Br J Pharmacol, 2017, 174(22): 4070-4086.
|
30 |
Nauck MA, Meier JJ, Cavender MA, et al. Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors[J]. Circulation, 2017, 136(9): 849-870.
|
31 |
D'Aiuto F, Parkar M, Brett PM, et al. Gene polymorphisms in pro-inflammatory cytokines are associated with systemic inflammation in patients with severe periodontal infections[J]. Cytokine, 2004, 28(1): 29-34.
|
32 |
Moraes RM, Lima GM, Oliveira FE, et al. Exenatide and sitagliptin decrease interleukin 1β, matrix metalloproteinase 9, and nitric oxide synthase 2 gene expression but does not reduce alveolar bone loss in rats with periodontitis[J]. J Periodontol, 2015, 86(11): 1287-1295.
|
33 |
Bakker AD, Kulkarni RN, Klein-Nulend J, et al. IL-6 alters osteocyte signaling toward osteoblasts but not osteoclasts[J]. J Dent Res, 2014, 93(4): 394-399.
|
34 |
Noh MK, Jung M, Kim SH, et al. Assessment of IL-6, IL-8 and TNF-α levels in the gingival tissue of patients with periodontitis[J]. Exp Ther Med, 2013, 6(3): 847-851.
|
35 |
Wang Y, Andrukhov O, Rausch-Fan X. Oxidative stress and antioxidant system in periodontitis[J]. Front Physiol, 2017, 8: 910.
|
36 |
Aidoukovitch A, Anders E, Dahl S, et al. The host defense peptide LL-37 is internalized by human periodontal ligament cells and prevents LPS-induced MCP-1 production[J]. J Periodontal Res, 2019, 54(6): 662-670.
|
37 |
Tian Q, Stepaniants SB, Mao M, et al. Integrated genomic and proteomic analyses of gene expression in Mammalian cells[J]. Mol Cell Proteomics, 2004, 3(10): 960-969.
|
38 |
de Sousa Abreu R, Penalva LO, Marcotte EM, et al. Global signatures of protein and mRNA expression levels[J]. Mol Biosyst, 2009, 5(12): 1512-1526.
|
39 |
de Klerk E, 't Hoen PA. Alternative mRNA transcription, processing, and translation: insights from RNA sequencing[J]. Trends Genet, 2015, 31(3): 128-139.
|
40 |
Lawrence T. The nuclear factor NF-kappaB pathway in inflammation[J]. Cold Spring Harb Perspect Biol, 2009, 1(6): a001651.
|
41 |
Nichols TC, Fischer TH, Deliargyris EN, et al. Role of nuclear factor-kappa B (NF-kappa B) in inflammation, periodontitis, and atherogenesis[J]. Ann Periodontol, 2001, 6(1): 20-29.
|
42 |
Hao C, Wu B, Hou Z, et al. Asiatic acid inhibits LPS-induced inflammatory response in human gingival fibroblasts[J]. Int Immunopharmacol, 2017, 50: 313-318.
|
43 |
Ambili R, Santhi WS, Janam P, et al. Expression of activated transcription factor nuclear factor-kappaB in periodontally diseased tissues[J]. J Periodontol, 2005, 76(7): 1148-1153.
|
44 |
Lin CH, Lin CC. Sitagliptin attenuates inflammatory responses in lipopolysaccharide-stimulated cardiomyocy-tes via nuclear factor-κB pathway inhibition[J]. Exp Ther Med, 2016, 11(6): 2609-2615.
|