West China Journal of Stomatology ›› 2025, Vol. 43 ›› Issue (1): 28-36.doi: 10.7518/hxkq.2024.2024110
• Basic Research • Previous Articles Next Articles
Jia Sixuan(), Zhang Sidi, You Yue, Sun Jialin, Duan Shijun, Shi Bing, Jia Zhonglin(
)
Received:
2024-03-29
Revised:
2024-10-23
Online:
2025-02-01
Published:
2025-01-22
Contact:
Jia Zhonglin
E-mail:1241774453@qq.com;zhonglinjia@scu.edu.cn
Supported by:
CLC Number:
Jia Sixuan, Zhang Sidi, You Yue, Sun Jialin, Duan Shijun, Shi Bing, Jia Zhonglin. Association analysis between forkhead box E1 gene and non-syndromic cleft lip with or without cleft palate in Han Chinese population[J]. West China Journal of Stomatology, 2025, 43(1): 28-36.
Add to citation manager EndNote|Ris|BibTeX
Tab 2
Association analysis results of SNPs ( P<0.50)
表型 | SNP | 位置 | Ref | Alt | AF/% | 患者 | 对照 | P值 | OR(95%CI) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Alt | Ref | Alt | Ref | ||||||||
NSCLO | rs13292899 | 100610865 | G | T | 15.19 | 24 | 134 | 0 | 6.41E-23 | - | |
rs874004 | 100622118 | C | G | 84.81 | 134 | 874 | 210 | 0.23 | 1.34(0.85~2.13) | ||
rs10113907 | 100624748 | C | G | 84.81 | 134 | 875 | 209 | 0.23 | 1.33(0.84~2.11) | ||
rs117236550 | 100623216 | C | T | 7.59 | 12 | 146 | 62 | 0.37 | 1.36(0.71~2.58) | ||
rs3758250 | 100614001 | C | T | 7.59 | 12 | 146 | 64 | 0.38 | 1.31(0.69~2.49) | ||
rs10983951 | 100608012 | G | A | 7.59 | 12 | 146 | 65 | 0.48 | 1.29(0.68~2.44) | ||
rs117227387 | 100612135 | A | T | 7.59 | 12 | 146 | 65 | 0.48 | 1.29(0.68~2.44) | ||
rs116899397 | 100617879 | T | C | 7.59 | 12 | 146 | 65 | 0.48 | 1.29(0.68~2.44) | ||
NSCLP | rs79268293 | 100606701 | A | G | 6.88 | 11 | 149 | 40 | 0.083 | 1.92(0.97~3.83) | |
rs4743136 | 100608059 | C | G | 6.88 | 11 | 149 | 47 | 0.16 | 1.63(0.83~3.21) | ||
rs74396330 | 100608239 | T | C | 6.88 | 11 | 149 | 40 | 0.083 | 1.93(0.97~3.84) | ||
100608456 | 100608456 | C | G | 6.88 | 11 | 149 | 47 | 0.16 | 1.63(0.83~3.21) | ||
rs10759960 | 100608745 | A | G | 91.88 | 147 | 1 030 | 54 | 0.13 | 0.59(0.32~1.11) | ||
rs115269261 | 100610146 | G | T | 6.88 | 11 | 149 | 40 | 0.083 | 1.93(0.97~3.84) | ||
rs13292899 | 100610865 | G | T | 10.12 | 16 | 142 | 0 | 2.36E-15 | - | ||
rs72753507 | 100613836 | T | C | 6.88 | 11 | 149 | 47 | 0.16 | 1.63(0.83~3.21) | ||
rs111846096 | 100614331 | C | G | 6.88 | 11 | 149 | 40 | 0.083 | 1.92(0.97~3.83) | ||
rs74606599 | 100614651 | G | T | 6.88 | 11 | 149 | 40 | 0.083 | 1.93(0.97~3.84) | ||
rs72753509 | 100615000 | A | G | 6.88 | 11 | 149 | 47 | 0.16 | 1.63(0.83~3.21) | ||
rs143226042 | 100615552 | C | A | 6.88 | 11 | 149 | 40 | 0.083 | 1.93(0.97~3.84) | ||
rs7043516 | 100617433 | A | C | 6.88 | 11 | 149 | 40 | 0.084 | 1.91(0.96~3.81) | ||
rs41274260 | 100617949 | T | C | 6.88 | 11 | 149 | 47 | 0.16 | 1.64(0.83~3.23) | ||
rs76305281 | 100618578 | C | T | 6.88 | 11 | 149 | 40 | 0.083 | 1.93(0.97~3.84) | ||
rs12343182 | 100624259 | G | C | 94.38 | 151 | 999 | 85 | 0.42 | 1.43(0.70~2.90) | ||
rs10119760 | 100624602 | G | C | 94.38 | 151 | 999 | 85 | 0.42 | 1.43(0.70~2.90) | ||
rs7860144 | 100626884 | A | G | 94.38 | 151 | 999 | 85 | 0.42 | 1.43(0.70~2.90) | ||
rs13299924 | 100627562 | C | T | 94.38 | 151 | 999 | 85 | 0.42 | 1.43(0.70~2.90) | ||
NSCL/P | rs13292899 | 100610865 | G | T | 12.66 | 40 | 276 | 0 | 1.85E-27 | - | |
rs10759960 | 100608745 | G | T | 94.02 | 299 | 1 030 | 54 | 0.48 | 0.84(0.48~1.41) |
Tab 3
The SNPs in NSCLO and NSCPO confirmatory association analysis results
SNP | 位置 | A1 | F_U | NSCLO | NSCPO | ||||
---|---|---|---|---|---|---|---|---|---|
卡方检验 | P值 | OR(95%CI) | 卡方检验 | P值 | OR(95%CI) | ||||
rs79268293 | 100606701 | A | 0.13 | 4.18 | 0.013 | 0.84(0.72~0.99) | 4.66 | 0.022 | 0.83(4.66~0.98) |
rs10983951 | 100608012 | A | 0.072 | 5.78 | 0.009 2 | 0.76(0.61~0.95) | 5.29 | 0.007 6 | 0.77(5.29~0.96) |
rs4743136 | 100608059 | G | 0.056 | 0.17 | 0.68 | 0.95(0.76~1.2) | 0.25 | 0.62 | 0.94(0.25~1.19) |
rs12378536 | 100608456 | G | 0.056 | 0.17 | 0.68 | 0.95(0.76~1.2) | 0.25 | 0.62 | 0.94(0.25~1.19) |
rs10759960 | 100608745 | A | 0.052 | 2.44 | 0.12 | 0.82(0.64~1.05) | 5.80E-05 | 0.99 | 1(0~1.27) |
rs13292899 | 100610865 | A | 0.13 | 3.81 | 0.008 5 | 0.85(0.73~1) | 4.99 | 0.032 | 0.83(4.99~0.98) |
rs117227387 | 100612135 | T | 0.072 | 5.78 | 0.009 2 | 0.76(0.61~0.95) | 5.29 | 0.007 6 | 0.77(5.29~0.96) |
rs72753507 | 100613836 | C | 0.056 | 0.17 | 0.68 | 0.95(0.76~1.2) | 0.25 | 0.62 | 0.94(0.25~1.19) |
rs3758250 | 100614001 | T | 0.072 | 5.78 | 0.009 2 | 0.76(0.61~0.95) | 5.29 | 0.007 6 | 0.77(5.29~0.96) |
rs74606599 | 100614651 | G | 0.13 | 5.01 | 0.008 3 | 0.83(0.71~0.98) | 3.88 | 0.035 | 0.85(3.88~1) |
rs72753509 | 100615000 | G | 0.056 | 0.19 | 0.66 | 0.95(0.75~1.2) | 0.19 | 0.66 | 0.95(0.19~1.2) |
rs143226042 | 100615552 | A | 0.13 | 5.01 | 0.008 3 | 0.83(0.71~0.98) | 3.88 | 0.035 | 0.85(3.88~1) |
rs7043516 | 100617433 | C | 0.056 | 0.19 | 0.66 | 0.95(0.75~1.2) | 0.19 | 0.66 | 0.95(0.19~1.2) |
rs116899397 | 100617879 | C | 0.072 | 5.78 | 0.009 2 | 0.76(0.61~0.95) | 5.29 | 0.007 6 | 0.77(5.29~0.96) |
rs874004 | 100622118 | C | 0.20 | 3.34 | 0.068 | 0.88(0.77~1.01) | 2.83 | 0.092 | 0.89(2.83~1.02) |
rs117236550 | 100623216 | T | 0.069 | 4.19 | 0.01 | 0.79(0.64~0.99) | 3.79 | 0.051 | 0.8(3.79~1) |
rs12343182 | 100624259 | G | 0.085 | 3.42 | 0.064 | 0.83(0.68~1.01) | 3.79 | 0.008 7 | 0.8(3.79~1) |
rs10119760 | 100624602 | G | 0.085 | 3.42 | 0.064 | 0.83(0.68~1.01) | 5.06 | 0.012 | 0.79(5.06~0.97) |
rs10113907 | 100624748 | C | 0.20 | 3.36 | 0.067 | 0.88(0.77~1.01) | 5.06 | 0.012 | 0.79(5.06~0.97) |
rs7860144 | 100626884 | A | 0.085 | 3.15 | 0.076 | 0.84(0.69~1.02) | 2.67 | 0.1 | 0.89(2.67~1.02) |
rs13299924 | 100627562 | C | 0.0 85 | 3.15 | 0.076 | 0.84(0.69~1.02) | 5.06 | 0.012 | 0.79(5.06~0.97) |
1 | Mangold E, Ludwig KU, Nöthen MM. Breakthroughs in the genetics of orofacial clefting[J]. Trends Mol Med, 2011, 17(12): 725-733. |
2 | Mossey PA, Modell B. Epidemiology of oral clefts 2012: an international perspective[J]. Front Oral Biol, 2012, 16: 1-18. |
3 | Dai L, Zhu J, Mao M, et al. Time trends in oral clefts in Chinese newborns: data from the Chinese National Birth Defects Monitoring Network[J]. Birth Defects Res A Clin Mol Teratol, 2010, 88(1): 41-47. |
4 | Fan D, Wu S, Liu L, et al. Prevalence of non-syndromic orofacial clefts: based on 15,094,978 Chinese perinatal infants[J]. Oncotarget, 2018, 9(17): 13981-13990. |
5 | Christensen K, Juel K, Herskind AM, et al. Long term follow up study of survival associated with cleft lip and palate at birth[J]. BMJ, 2004, 328(7453): 1405. |
6 | Vieira AR. Unraveling human cleft lip and palate research[J]. J Dent Res, 2008, 87(2): 119-125. |
7 | Sun Y, Huang Y, Yin A, et al. Genome-wide association study identifies a new susceptibility locus for cleft lip with or without a cleft palate[J]. Nat Commun, 2015, 6: 6414. |
8 | Beaty TH, Murray JC, Marazita ML, et al. A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4[J]. Nat Genet, 2010, 42(6): 525-529. |
9 | Ge X, Hong JW, Shen JY, et al. Investigation of candidate genes of non-syndromic cleft lip with or without cleft palate, using both case-control and family-based association studies[J]. Medicine(Baltimore), 2019, 98(26): e16170. |
10 | Zhang B, Duan S, Shi J, et al. Family-based study of association between MAFB gene polymorphisms and NS-CL/P among western Han Chinese population[J]. Adv Clin Exp Med, 2018, 27(8): 1109-1116. |
11 | Zhang BH, Shi JY, Lin YS, et al. VAX1 gene associated non-syndromic cleft lip with or without palate in Western Han Chinese[J]. Arch Oral Biol, 2018, 95: 40-43. |
12 | Fontoura C, Silva RM, Granjeiro JM, et al. Association of WNT9B gene polymorphisms with nonsyndromic cleft lip with or without cleft palate in brazilian nuclear families[J]. Cleft Palate Craniofac J, 2015, 52(1): 44-48. |
13 | Zhang BH, Huang N, Shi JY, et al. Homozygote C/C at rs12543318 was risk factor for non-syndromic cleft lip only from Western Han Chinese population[J]. J Oral Pathol Med, 2018, 47(6): 620-626. |
14 | Hao J, Gao R, Wu W, et al. Association between BMP4 gene polymorphisms and cleft lip with or without cleft palate in a population from South China[J]. Arch Oral Biol, 2018, 93: 95-99. |
15 | Cura F, Palmieri A, Girardi A, et al. Possible effect of SNAIL family transcriptional repressor 1 polymorphisms in non-syndromic cleft lip with or without cleft palate[J]. Clin Oral Investig, 2018, 22(7): 2535-2541. |
16 | Zhou R, Wang M, Li W, et al. Haplotype and haplotype-environment interaction analysis revealed roles of SPRY2 for NSCL/P among Chinese populations[J]. Int J Environ Res Public Health, 2019, 16(4): 557. |
17 | Grosen D, Bille C, Petersen I, et al. Risk of oral clefts in twins[J]. Epidemiology, 2011, 22(3): 313-319. |
18 | Xu DP, Qu WD, Sun C, et al. A study on environmental factors for nonsyndromic cleft lip and/or palate[J]. J Craniofac Surg, 2018, 29(2): 364-367. |
19 | Marazita ML, Murray JC, Lidral AC, et al. Meta-analysis of 13 genome scans reveals multiple cleft lip/palate genes with novel loci on 9q21 and 2q32-35[J]. Am J Hum Genet, 2004, 75(2): 161-173. |
20 | Ludwig KU, Böhmer AC, Rubini M, et al. Strong association of variants around FOXE1 and orofacial clefting[J]. J Dent Res, 2014, 93(4): 376-381. |
21 | Lammer EJ, Mohammed N, Iovannisci DM, et al. Genetic variation of FOXE1 and risk for orofacial clefts in a California population[J]. Am J Med Genet A, 2016, 170(11): 2770-2776. |
22 | Cuesta I, Zaret KS, Santisteban P. The forkhead factor FoxE1 binds to the thyroperoxidase promoter during thyroid cell differentiation and modifies compacted chromatin structure[J]. Mol Cell Biol, 2007, 27(20): 7302-7314. |
23 | Civitareale D, Lonigro R, Sinclair AJ, et al. A thyroid-specific nuclear protein essential for tissue-specific expression of the thyroglobulin promoter[J]. EMBO J, 1989, 8(9): 2537-2542. |
24 | Francis-Lang H, Price M, Polycarpou-Schwarz M, et al. Cell-type-specific expression of the rat thyroperoxidase promoter indicates common mechanisms for thyroid-specific gene expression[J]. Mol Cell Biol, 1992, 12(2): 576-588. |
25 | Moreno LM, Mansilla MA, Bullard SA, et al. FOXE1 association with both isolated cleft lip with or without cleft palate, and isolated cleft palate[J]. Hum Mol Genet, 2009, 18(24): 4879-4896. |
26 | Leslie EJ, Carlson JC, Shaffer JR, et al. Genome-wide meta-analyses of nonsyndromic orofacial clefts identify novel associations between FOXE1 and all orofacial clefts, and TP63 and cleft lip with or without cleft palate[J]. Human Genet, 2017, 136(3): 275-286. |
27 | Moreno Uribe LM, Fomina T, Munger RG, et al. A population-based study of effects of genetic loci on orofacial clefts[J]. J Dent Res, 2017, 96(11): 1322-1329. |
28 | Ray D, Venkataraghavan S, Zhang W, et al. Pleiotropy method reveals genetic overlap between orofacial clefts at multiple novel loci from GWAS of multi-ethnic trios[J]. PLoS Genet, 2021, 17(7): e1009584. |
29 | 尹晓晴. 染色体20q12和FOXE1基因遗传变异与中国人群非综合征型唇腭裂遗传易感性的研究[D]. 南京: 南京医科大学, 2019. |
Yin XQ. Study on the genetic susceptibility of non-syndromic cleft lip and palate in the Chinese population: variations in chromosome 20q12 and the FOXE1 gene[D]. Nanjing: Nanjing Medical University, 2019. | |
30 | Huang L, Jia Z, Shi Y, et al. Genetic factors define CPO and CLO subtypes of nonsyndromicorofacial cleft[J]. PLoS Genet, 2019, 15(10): e1008357. |
31 | Zannini M, Avantaggiato V, Biffali E, et al. TTF-2, a new forkhead protein, shows a temporal expression in the developing thyroid which is consistent with a role in controlling the onset of differentiation[J]. EMBO J, 1997, 16(11): 3185-3197. |
32 | Dathan N, Parlato R, Rosica A, et al. Distribution of the titf2/foxe1 gene product is consistent with an important role in the development of foregut endoderm, palate, and hair[J]. Dev Dyn, 2002, 224(4): 450-456. |
33 | Venza I, Visalli M, Parrillo L, et al. MSX1 and TGF-beta3 are novel target genes functionally regulated by FOXE1[J]. Hum Mol Genet, 2011, 20(5): 1016-1025. |
34 | Trueba SS, Augé J, Mattei G, et al. PAX8, TITF1, and FOXE1 gene expression patterns during human development: new insights into human thyroid development and thyroid dysgenesis-associated malformations[J]. J Clin Endocrinol Metab, 2005, 90(1): 455-462. |
35 | Imani MM, Safaei M, Lopez-Jornet P, et al. A systematic review and meta-analysis on protective role of forkhead box E1 (FOXE1) polymorphisms in susceptibility to non-syndromic cleft lip/palate[J]. Int Orthod, 2019, 17(3): 437-445. |
36 | Lennon CJ, Birkeland AC, Nuñez JA, et al. Association of candidate genes with nonsyndromic clefts in Honduran and Colombian populations[J]. Laryngoscope, 2012, 122(9): 2082-2087. |
37 | Nikopensius T, Kempa I, Ambrozaitytė L, et al. Variation in FGF1, FOXE1, and TIMP2 genes is associated with nonsyndromic cleft lip with or without cleft palate[J]. Birth Defects Res A Clin Mol Teratol, 2011, 91(4): 218-225. |
38 | Xie L, Deng Y, Yuan Y, et al. Association of SNP rs1867277 in FOXE1 gene and cleft lip with or without cleft palate in a Han Chinese population[J]. Fetal Pediatr Pathol, 2018, 37(2): 89-94. |
39 | Xiao WL, Jia KN, Yu G, et al. Association between forkhead box E1 polymorphisms and risk of non-syndromic cleft lip with or without cleft palate: a meta-analysis[J]. Orthod Craniofac Res, 2020, 23(2): 151-159. |
40 | Yin X, Zhang H, Zhu Z, et al. FOXE1 polymorphisms and non-syndromic orofacial cleft susceptibility in a Chinese Han population[J]. Oral Dis, 2016, 22(4): 274-279. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||