1 |
Vandewalle J, Luypaert A, De Bosscher K, et al. Therapeutic mechanisms of glucocorticoids[J]. Trends Endocrinol Metab, 2018, 29(1): 42-54.
|
2 |
Shimba A, Ikuta K. Control of immunity by glucocorticoids in health and disease[J]. Semin Immunopathol, 2020, 42(6): 669-680.
|
3 |
Bonner JJ. The H-2 genetic complex, dexamethasone-induced cleft palate, and other craniofacial anomalies[J]. Curr Top Dev Biol, 1984, 19: 193-215.
|
4 |
Greene RM, Kochhar DM. Some aspects of corticosteroid-induced cleft palate: a review[J]. Teratology, 1975, 11(1): 47-55.
|
5 |
Evans RM. The steroid and thyroid hormone receptor superfamily[J]. Science, 1988, 240(4854): 889-895.
|
6 |
Hu X, Gao JH, Liao YJ, et al. Dexamethasone alters epithelium proliferation and survival and suppresses Wnt/β-catenin signaling in developing cleft palate[J]. Food Chem Toxicol, 2013, 56: 67-74.
|
7 |
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014, 15(12): 550.
|
8 |
Li C, Lan Y, Jiang R. Molecular and cellular mechanisms of palate development[J]. J Dent Res, 2017, 96(11): 1184-1191.
|
9 |
Li R, Chen Z, Yu Q, et al. The function and regulatory network of Pax9 gene in palate development[J]. J Dent Res, 2019, 98(3): 277-287.
|
10 |
Yoshioka W, Tohyama C. Mechanisms of developmental toxicity of dioxins and related compounds[J]. Int J Mol Sci, 2019, 20(3): 617.
|
11 |
Baker NC, Sipes NS, Franzosa J, et al. Characterizing cleft palate toxicants using ToxCast data, chemical structure, and the biomedical literature[J]. Birth Defects Res, 2020, 112(1): 19-39.
|
12 |
Reynolds K, Kumari P, Sepulveda Rincon L, et al. Wnt signaling in orofacial clefts: crosstalk, pathogenesis and models[J]. Dis Model Mech, 2019, 12(2): dmm037051.
|
13 |
Weng M, Chen Z, Xiao Q, et al. A review of FGF signaling in palate development[J]. Biomed Pharmacother, 2018, 103: 240-247.
|
14 |
Sakuma C, Imura H, Yamada T, et al. Histological and immunohistochemical studies to determine the mechanism of cleft palate induction after palatal fusion in mice exposed to TCDD[J]. Int J Mol Sci, 2022, 23(4): 2069.
|
15 |
Lessard JL, Wee EL, Zimmerman EF. Presence of contractile proteins in mouse fetal palate prior to shelf elevation[J]. Teratology, 1974, 9(1): 113-125.
|
16 |
Chiquet M, Blumer S, Angelini M, et al. Mesenchymal remodeling during palatal shelf elevation revealed by extracellular matrix and F-actin expression patterns[J]. Front Physiol, 2016, 7: 392.
|
17 |
Chen J, Lan Y, Baek JA, et al. Wnt/beta-catenin signaling plays an essential role in activation of odontogenic mesenchyme during early tooth development[J]. Dev Biol, 2009, 334(1): 174-185.
|
18 |
Wang XM, Liu WL, Chen Y, et al. Lithium-induced overexpression of β-catenin delays murine palatal shelf elevation by Cdc-42 mediated F-actin remodeling in mesenchymal cells[J]. Birth Defects Res, 2021, 113(5): 427-438.
|
19 |
Oshima-Nakayama M, Yamada A, Kurosawa T, et al. Cdc42 is crucial for facial and palatal formation during craniofacial development[J]. Bone Rep, 2016, 5: 1-6.
|
20 |
Zhu C, Cheng C, Wang Y, et al. Loss of ARHGEF6 causes hair cell stereocilia deficits and hearing loss in mice[J]. Front Mol Neurosci, 2018, 11: 362.
|
21 |
Mamula D, Korthals M, Hradsky J, et al. Arhgef6 (alpha-PIX) cytoskeletal regulator signals to GTPases and Cofilin to couple T cell migration speed and persistence[J]. J Leukoc Biol, 2021, 110(5): 839-852.
|
22 |
Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities[J]. Cell, 2017, 169(6): 985-999.
|
23 |
Ranes M, Zaleska M, Sakalas S, et al. Reconstitution of the destruction complex defines roles of AXIN polymers and APC in β-catenin capture, phosphorylation, and ubi-quitylation[J]. Mol Cell, 2021, 81(16): 3246-3261.e11.
|
24 |
Chen J, Li H, Zhang B, et al. ABI2-mediated MEOX2/KLF4-NANOG axis promotes liver cancer stem cell and drives tumour recurrence[J]. Liver Int, 2022, 42(11): 2562-2576.
|