West China Journal of Stomatology ›› 2019, Vol. 37 ›› Issue (2): 124-129.doi: 10.7518/hxkq.2019.02.002
Previous Articles Next Articles
Bangcheng Yang1(),Xuedong Zhou2,Haiyang Yu3,Yao Wu1,Chongyun Bao4,Yi Man5,Lei Cheng2,Yao Sun6
Received:
2018-12-05
Revised:
2019-01-02
Online:
2019-04-01
Published:
2019-04-28
Contact:
Bangcheng Yang
E-mail:yangbchengc@126.com
Supported by:
CLC Number:
Bangcheng Yang,Xuedong Zhou,Haiyang Yu,Yao Wu,Chongyun Bao,Yi Man,Lei Cheng,Yao Sun. Advances in titanium dental implant surface modification[J]. West China Journal of Stomatology, 2019, 37(2): 124-129.
Add to citation manager EndNote|Ris|BibTeX
[1] | 程巧愉, 谢雨航, 王馨怡 , 等. 牙种植体多种表面处理、改性方法研究及最新进展[J]. 中国口腔种植学杂志, 2016,21(4):189-195. |
Cheng QY, Xie YH, Wang XY , et al. Advances in dental implant surface modification[J]. Chin J Oral Implant, 2016,21(4):189-195. | |
[2] |
Valverde GB, Jimbo R, Teixeira HS , et al. Evaluation of surface roughness as a function of multiple blasting processing variables[J]. Clin Oral Implants Res, 2013,24(2):238-242.
doi: 10.1111/clr.2013.24.issue-2 URL |
[3] |
Linez-Bataillon P, Monchau F, Bigerelle M , et al. In vitro MC3T3 osteoblast adhesion with respect to surface roughness of Ti6Al4V substrates[J]. Biomol Eng, 2002,19(2/3/4/5/6):133-141.
doi: 10.1016/S1389-0344(02)00024-2 URL |
[4] |
Zhang EW, Wang YB, Shuai KG , et al. In vitro and in vivo evaluation of SLA titanium surfaces with further alkali or hydrogen peroxide and heat treatment[J]. Biomed Mater, 2011,6(2):025001.
doi: 10.1088/1748-6041/6/2/025001 URL |
[5] |
Kim HW, Koh YH, Li LH , et al. Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method[J]. Biomaterials, 2004,25(13):2533-2538.
doi: 10.1016/j.biomaterials.2003.09.041 URL |
[6] |
Moroni A, Caja VL, Sabato C , et al. Bone ingrowth analysis and interface evaluation of hydroxyapatite coated versus uncoated titanium porous bone implants[J]. J Mater Sci: Mater Med, 1994,5(6/7):411-416.
doi: 10.1007/BF00058975 URL |
[7] |
Cunha A, Renz RP, Blando E , et al. Osseointegration of atmospheric plasma-sprayed titanium implants: influence of the native oxide layer[J]. J Biomed Mater Res A, 2014,102(1):30-36.
doi: 10.1002/jbm.a.34667 URL |
[8] |
da Silva LLG, Ueda M, Silva MM , et al. Corrosion behavior of Ti-6Al-4V alloy treated by plasma immersion ion implantation process[J]. Surf Coat Technol, 2007,201(19/20):8136-8139.
doi: 10.1016/j.surfcoat.2006.03.054 URL |
[9] |
Cao HL, Liu XY, Meng FH , et al. Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects[J]. Biomaterials, 2011,32(3):693-705.
doi: 10.1016/j.biomaterials.2010.09.066 URL |
[10] |
Wan YZ, Raman S, He F , et al. Surface modification of medical metals by ion implantation of silver and copper[J]. Vacuum, 2007,81(9):1114-1118.
doi: 10.1016/j.vacuum.2006.12.011 URL |
[11] | Unosson E, Rodriguez D, Welch K , et al. Reactive combinatorial synjournal and characterization of a gradient Ag-Ti oxide thin film with antibacterial properties[J]. Acta Biomater, 2015(11):503-510. |
[12] |
Xu LX, Leng YX, Zhou HF , et al. Structure and hemocompatibility of titanium oxide films synthesized by continuous or pulsed DC magnetron sputtering[J]. Key Eng Mater, 2005: 288-289, 299-302.
doi: 10.4028/www.scientific.net/KEM.288-289 URL |
[13] | 鄢荣曾, 胡敏 . 颅颌面硬组织植入用钛合金材料的研究进展[J]. 辽宁医学院学报, 2015,36(6):106-109. |
Yan RZ, Hu M . Advances in titanium alloys for cranio maxillofacial hard tissue implantation[J]. J Liaoning Med Univ, 2015,36(6):106-109. | |
[14] |
Qin J, Yang DQ, Maher S , et al. Micro- and nano-structured 3D printed titanium implants with a hydroxyapatite coating for improved osseointegration[J]. J Mater Chem B, 2018,6(19):3136-3144.
doi: 10.1039/C7TB03251J URL |
[15] |
Hu X, Xu RG, Yu XL , et al. Enhanced antibacterial efficacy of selective laser melting titanium surface with nanophase calcium phosphate embedded to TiO2 nanotubes[J]. Biomed Mater, 2018,13(4):045015.
doi: 10.1088/1748-605X/aac1a3 URL |
[16] | Diamanti MV, Spreafico FC, Pedeferri MP . Production of anodic TiO2 nanofilms and their characterization[J]. Physics Procedia, 2013,40:4030-4037. |
[17] |
Yang BC, Uchida M, Kim HM , et al. Preparation of bioactive titanium metal via anodic oxidation treatment[J]. Biomaterials, 2004,25(6):1003-1010.
doi: 10.1016/S0142-9612(03)00626-4 URL |
[18] |
Chung CJ, Long HY . Systematic strontium substitution in hydroxyapatite coatings on titanium via micro-arc treatment and their osteoblast/osteoclast responses[J]. Acta Biomater, 2011,7(11):4081-4087.
doi: 10.1016/j.actbio.2011.07.004 URL |
[19] | Miola M, Brovarone CV, Maina G , et al. In vitro study of manganese-doped bioactive glasses for bone regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2014(38):107-118. |
[20] |
Hu H, Zhang W, Qiao Y , et al. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium[J]. Acta Biomater, 2012,8(2):904-915.
doi: 10.1016/j.actbio.2011.09.031 URL |
[21] | Ferraris S, Spriano S . Antibacterial titanium surfaces for medical implants[J]. Mater Sci Engi C, 2016(61):965-978. |
[22] |
Wu QJ, Li JH, Zhang WJ , et al. Antibacterial property, angiogenic and osteogenic activity of Cu-incorporated TiO2 coating[J]. J Mater Chem B, 2014,2(39):6738-6748.
doi: 10.1039/C4TB00923A URL |
[23] |
Zwilling V, Darque-Ceretti E, Boutry-Forveille A , et al. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy[J]. Surf Interf Analy, 1999,27(7):629-637.
doi: 10.1002/(ISSN)1096-9918 URL |
[24] | Lee K, Mazare A, Schmuki P . One-dimensional titanium dioxide nanomaterials: nanotubes[J]. Chem Rev, 2014,114 |
( 19):9385-9454. | |
[25] |
Gong DW, Grimes CA, Varghese OK , et al. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. J Mater Res, 2001,16(12):3331-3334.
doi: 10.1557/JMR.2001.0457 URL |
[26] | Das K, Bose S, Bandyopadhyay A , et al. Surface coatings for improvement of bone cell materials and antimicrobial activities of Ti implants[J]. J Biomed Mater Res Part B Appl Biomater, 2008,87(2):455-460. |
[27] |
Popat K, Eltgroth M , LaTempa T , et al. Titania nanotubes: a novel platform for drug-eluting coatings for medical implants[J]. Small, 2007,3(11):1878-1881.
doi: 10.1002/(ISSN)1613-6829 URL |
[28] |
Park J, Bauer S, Pittrof A , et al. Synergistic control of mesenchymal stem cell differentiation by nanoscale surface geometry and immobilized growth factors on TiO2 nanotubes[J]. Small, 2012,8(1):98-107.
doi: 10.1002/smll.201100790 URL |
[29] | Ribeiro AR, Oliveira F, Boldrini LC , et al. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications[J]. Mater Sci Eng C, 2015(54):196-206. |
[30] |
Du Q, Wei DQ, Wang YM , et al. The effect of applied voltages on the structure, apatite-inducing ability and antibacterial ability of micro arc oxidation coating formed on titanium surface[J]. Bioact Mater, 2018,3(4):426-433.
doi: 10.1016/j.bioactmat.2018.06.001 URL |
[31] | Li YD, Wang WQ, Liu HY , et al. Formation and in vitro/in vivo performance of “cortex-like” micro/nano-structured TiO2 coatings on titanium by micro-arc oxidation[J]. Mater Sci Eng C, 2018(87):90-103. |
[32] | Uhlmann DR, Suratwala T, Davidson K , et al. Sol: gel derived coatings on glass[J]. J Non-Crystal Solid, 1997(218):113-122. |
[33] |
Wen C, Xu W, Hu WY , et al. Hydroxyapatite/titania sol-gel coatings on titanium-zirconium alloy for biomedical applications[J]. Acta Biomater, 2007,3(3):403-410.
doi: 10.1016/j.actbio.2006.10.004 URL |
[34] | Olding T, Sayer M, Barrow D . Ceramic sol-gel composite coatings for electrical insulation[J]. Thin Solid Films, 2001 |
( 398/399):581-586. | |
[35] |
Nishio K, Neo M, Akiyama H , et al. The effect of alkali- and heat-treated titanium and apatite-formed titanium on osteoblastic differentiation of bone marrow cells[J]. J Biomed Mater Res, 2000,52(4):652-661.
doi: 10.1002/(ISSN)1097-4636 URL |
[36] | Zhang Y, Chen Y, Kou HC , et al. Enhanced bone healing in porous Ti implanted rabbit combining bioactive modification and mechanical stimulation[J]. J Mech Behav Biomed Mater, 2018(86):336-344. |
[37] | Li JH, Wang GF, Wang DH , et al. Alkali-treated titanium selectively regulating biological behaviors of bacteria, cancer cells and mesenchymal stem cells[J]. J Colloid Interf Sci, 2014(436):160-170. |
[38] |
Ban S, Iwaya Y, Kono H , et al. Surface modification of titanium by etching in concentrated sulfuric acid[J]. Dent Mater, 2006,22(12):1115-1120.
doi: 10.1016/j.dental.2005.09.007 URL |
[39] | Song W, Song X, Yang CX , et al. Chitosan/siRNA functionalized titanium surface via a layer-by-layer approach for in vitro sustained gene silencing and osteogenic promotion[J]. Int J Nanomedicine, 2015,10:2335-2346. |
[40] |
Zhong X, Song YJ, Yang P , et al. Titanium surface priming with phase-transited lysozyme to establish a silver nanoparticle-loaded Chitosan/Hyaluronic acid antibacterial multilayer via layer-by-layer self-assembly[J]. PLoS One, 2016,11(1):e0146957
doi: 10.1371/journal.pone.0146957 URL |
[41] | Yuan Z, Liu P, Hao YS , et al. Construction of Ag-incorporated coating on Ti substrates for inhibited bacterial growth and enhanced osteoblast response[J]. Colloids Surf B Biointerfaces, 2018(171):597-605. |
[42] |
Lin HY, Chen JH . Osteoblast differentiation and phenotype expressions on chitosan-coated Ti-6Al-4V[J]. Carbohydr Polym, 2013,97(2):618-626.
doi: 10.1016/j.carbpol.2013.05.048 URL |
[43] |
Chen T, Wang S, He F , et al. Promotion of osseointegration using Protamine/Alginate/Bone morphogenic protein 2 biofunctionalized composite coating on nanopolymorphic titanium surfaces[J]. J Biomedl Nanotechnol, 2018, 14(5): 933-945.
doi: 10.1166/jbn.2018.2506 URL |
[44] |
Kazemzadeh-Narbat M, Kindrachuk J, Duan K , et al. Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections[J]. Biomaterials, 2010,31(36):9519-9526.
doi: 10.1016/j.biomaterials.2010.08.035 URL |
[45] |
Rabea EI, Badawy MET, Stevens CV , et al. Chitosan as antimicrobial agent: applications and mode of action[J]. Biomacromolecules, 2003,4(6):1457-1465.
doi: 10.1021/bm034130m URL |
[46] |
Yang Y, Ao HY, Wang YG , et al. Cytocompatibility with osteogenic cells and enhanced in vivo anti-infection potential of quaternized chitosan-loaded titania nanotubes[J]. Bone Res, 2016,4:16027.
doi: 10.1038/boneres.2016.27 URL |
[47] |
Timofeeva L, Kleshcheva N . Antimicrobial polymers: mechanism of action, factors of activity, and applications[J]. Appl Microbiol Biotechnol, 2011,89(3):475-492.
doi: 10.1007/s00253-010-2920-9 URL |
[48] |
Cui XN, Murakami T, Tamura Y , et al. Bacterial inhibition and osteoblast adhesion on Ti alloy surfaces modified by poly(PEGMA-r-phosmer) coating[J]. ACS Appl Mater Interfaces, 2018,10(28):23674-23681.
doi: 10.1021/acsami.8b07757 URL |
[1] | Wang Liangtao, Li Shan, Lu Doudou, Chen Zheng.. Structural design of gradient porous dental implant based on orthogonal test [J]. West China Journal of Stomatology, 2023, 41(6): 647-652. |
[2] | Zhang Min, Ao Xiaogang, Zheng Zheng, Chen Wenchuan.. Promoting the adhesion of human gingival epithelial cells on titanium surface by non-thermal atmospheric plasma irradiation [J]. West China Journal of Stomatology, 2022, 40(3): 285-292. |
[3] | Ao Xiaogang, Chen Wenchuan. Research progress on the osseointegration of titanium implants promoted by cold atmospheric plasma [J]. West China Journal of Stomatology, 2020, 38(5): 566-570. |
[4] | Yue Wu,Jianfeng Jin. Surface characteristics of pure titanium loaded graphene oxide: effect on bacteria adhesion and osteoblast structure [J]. West China Journal of Stomatology, 2019, 37(4): 366-371. |
[5] | Lei Cheng,Haiyang Yu,Yao Wu,Chongyun Bao,Bangcheng Yang,Yi Man,Yao Sun,Xiaoli Yan,Xuedong Zhou. A review of peri-implant microbiology [J]. West China Journal of Stomatology, 2019, 37(1): 7-12. |
[6] | Ting Wei,Xinwei Zhang,Huiqiang Sun,Mengyun Mao. Selective laser sintering and performances of porous titanium implants [J]. West China Journal of Stomatology, 2018, 36(5): 532-538. |
[7] | Yang Yao, Yu Du, Xia Gu, Mengkai Guang, Bo Huang, Ping. Gong. Local injection of exogenous nerve growth factor improves early bone maturation of implants [J]. West China Journal of Stomatology, 2018, 36(2): 128-132. |
[8] | Ye. Lin. Current dental implant design and its clinical importance [J]. West China Journal of Stomatology, 2017, 35(1): 18-28. |
[9] | Fan Jiadong, Li Yanfeng, Liu Le, Han Yishi, Hu Pin, Zhang Yue, Bao Wenya.. Comparative experiments of stripping sheep maxillary sinus mucosal with new-type stripper and umbrella detacher [J]. West China Journal of Stomatology, 2016, 34(5): 506-510. |
[10] | Wang Maiquan, Peng Liwei, Li Yunfeng. Efficacy of systemic administration of oxytocin on implant osseointegration in osteoporotic rats [J]. West China Journal of Stomatology, 2016, 34(4): 332-335. |
[11] | Gou Shiran, Zhang Fan, Li Mengting, Huang Ting, Zheng Lige,. Preparation of hydroxyapatite/chitosan-transforming growth factor-β1 composite coatings on titanium surfaces and its effect on the attachment and proliferation of osteoblasts [J]. West China Journal of Stomatology, 2016, 34(3): 229-233. |
[12] | Liu Cuiling, Yang Liyuan, Gao Xu, Shang Hong. Influence of coping material selection and porcelain firing on marginal and internal fit of computer-aided design/computeraided manufacturing of zirconia and titanium ceramic implant-supported crowns [J]. West China Journal of Stomatology, 2016, 34(3): 262-266. |
[13] | Tan Yong, Gao Bo. Effects of thermal and mechanical cycling on the metal-ceramic bond strength of machine-milled Ti2448 alloy and pure titanium [J]. West China Journal of Stomatology, 2016, 34(1): 54-58. |
[14] | Huo Fangjun, Xie Li, Tong Xingye, Wang Yueting, Guo Weihua, Tian Weidong,. Corrosion resistant properties of different anodized microtopographies on titanium surfaces [J]. West China Journal of Stomatology, 2015, 33(6): 646-650. |
[15] | Hu Yun, Li Wei, Chen Qi, Song Fumin, Tang Wei, Wang Hang. Long-term follow-up study of titanium implant impact on pediatric mandibular growth and development [J]. West China Journal of Stomatology, 2015, 33(4): 405-408. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||