华西口腔医学杂志 ›› 2024, Vol. 42 ›› Issue (2): 214-226.doi: 10.7518/hxkq.2024.2023275
杨浩然1,2(), 陈宇翔1,2, 赵安娜1,2, 程婷婷1,2, 周建忠1,2, 李自良1,2(
)
收稿日期:
2023-08-24
修回日期:
2024-01-17
出版日期:
2024-04-01
发布日期:
2024-03-26
通讯作者:
李自良
E-mail:2360495671@qq.com;1752114604@qq.com
作者简介:
杨浩然,硕士,E-mail:基金资助:
Yang Haoran1,2(), Chen Yuxiang1,2, Zhao Anna1,2, Cheng Tingting1,2, Zhou Jianzhong1,2, Li Ziliang1,2(
)
Received:
2023-08-24
Revised:
2024-01-17
Online:
2024-04-01
Published:
2024-03-26
Contact:
Li Ziliang
E-mail:2360495671@qq.com;1752114604@qq.com
Supported by:
摘要:
目的 本研究旨在揭示种植体周炎发生发展过程中参与调控的关键基因,并通过随机森林(RF)和人工神经网络(ANN)构建种植体周炎的诊断模型。 方法 本研究从GEO数据库中获取GSE33774、GSE106090和GSE57631数据集。对GSE33774和GSE106090数据集进行差异表达和功能富集分析,通过蛋白质互作网络(PPI)和RF筛选出关键基因,利用ANN建立种植体周炎的诊断模型,并在GSE33774和GSE57631数据集中进行验证。同时,构建转录因子-基因相互作用网络和转录因子-微小RNA(miRNA)调控网络。 结果 本研究共筛选出124个参与调控种植体周炎的差异表达基因(DEGs)。富集分析结果表明,DEGs主要和免疫受体活性蛋白及细胞因子受体活性相关,主要参与白细胞和中性粒细胞迁移的过程。PPI和RF筛选出6个关键基因,分别为CD38、CYBB、FCGR2A、SELL、TLR4和CXCL8。受试者操作特征曲线(ROC)表明ANN模型具有较好的诊断性。本研究还发现FOXC1、GATA2和NF-κB1可能是种植体周炎中重要的转录因子,hsa-miR-204可能是关键的miRNA。 结论 RF和ANN构建的种植体周炎的诊断模型可信度高,CD38、CYBB、FCGR2A、SELL、TLR4和CXCL8是潜在的诊断标志物。FOXC1、GATA2和NF-κB1可能是种植体周炎中重要的转录因子,hsa-miR-204作为关键的miRNA在其中扮演着重要角色。
中图分类号:
杨浩然, 陈宇翔, 赵安娜, 程婷婷, 周建忠, 李自良. 基于随机森林和人工神经网络构建种植体周炎的诊断模型[J]. 华西口腔医学杂志, 2024, 42(2): 214-226.
Yang Haoran, Chen Yuxiang, Zhao Anna, Cheng Tingting, Zhou Jianzhong, Li Ziliang. Construction of a diagnostic model based on random forest and artificial neural network for peri-implantitis[J]. West China Journal of Stomatology, 2024, 42(2): 214-226.
1 | Salvi GE, Cosgarea R, Sculean A. Prevalence and me-chanisms of peri-implant diseases[J]. J Dent Res, 2017, 96(1): 31-37. |
2 | Caton JG, Armitage G, Berglundh T, et al. A new classification scheme for periodontal and peri-implant disea-ses and conditions—Introduction and key changes from the 1999 classification[J]. J Periodontol, 2018, 89 (): S1-S8. |
3 | Sahrmann P, Gilli F, Wiedemeier DB, et al. The micro-biome of peri-implantitis: a systematic review and meta-analysis[J]. Microorganisms, 2020, 8(5): 661. |
4 | Derks J, Tomasi C. Peri-implant health and disease. A sy-stematic review of current epidemiology[J]. J Clin Perio-dontol, 2015, 42 : S158-S171. |
5 | Schwarz F, Jepsen S, Obreja K, et al. Surgical therapy of peri-implantitis[J]. Periodontol 2000, 2022, 88(1): 145-181. |
6 | Listl S, Frühauf N, Dannewitz B, et al. Cost-effectiveness of non-surgical peri-implantitis treatments[J]. J Clin Periodontol, 2015, 42(5): 470-477. |
7 | Petković-Curcin A, Matić S, Vojvodić D, et al. Cytoki-nes in pathogenesis of peri-implantitis[J]. Vojnosanit Pre-gl, 2011, 68(5): 435-440. |
8 | Corrêa MG, Pimentel SP, Ribeiro FV, et al. Host respon-se and peri-implantitis[J]. Braz Oral Res, 2019, 33(): e066. |
9 | Insua A, Monje A, Wang HL, et al. Basis of bone meta-bolism around dental implants during osseointegration and peri-implant bone loss[J]. J Biomed Mater Res A, 2017, 105(7): 2075-2089. |
10 | Fragkioudakis I, Tseleki G, Doufexi AE, et al. Current concepts on the pathogenesis of peri-implantitis: a narrative review[J]. Eur J Dent, 2021, 15(2): 379-387. |
11 | Che D, Liu Q, Rasheed K, et al. Decision tree and ensemble learning algorithms with their applications in bioinformatics[J]. Adv Exp Med Biol, 2011, 696: 191-199. |
12 | Jiřík M, Moulisová V, Hlaváč M, et al. Artificial neural networks and computer vision in medicine and surgery[J]. Rozhl Chir, 2022, 101(12): 564-570. |
13 | Ma CL, Yuan YB. A novel support vector machine with globality-locality preserving[J]. Sci World J, 2014, 2014: 872697. |
14 | Pfeifer B, Holzinger A, Schimek MG. Robust random forest-based all-relevant feature ranks for trustworthy AI[J]. Stud Health Technol Inform, 2022, 294: 137-138. |
15 | Lindon JC, Holmes E, Bollard ME, et al. Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis[J]. Biomarkers, 2004, 9(1): 1-31. |
16 | Tian Y, Yang J, Lan M, et al. Construction and analysis of a joint diagnosis model of random forest and artificial neural network for heart failure[J]. Aging (Albany NY), 2020, 12(24): 26221-26235. |
17 | Sun D, Peng H, Wu Z. Establishment and analysis of a combined diagnostic model of Alzheimer’s disease with random forest and artificial neural network[J]. Front Aging Neurosci, 2022, 14: 921906. |
18 | Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7): e47. |
19 | Lai D, Ma W, Wang J, et al. Immune infiltration and diagnostic value of immune-related genes in periodontitis using bioinformatics analysis[J]. J Periodontal Res, 2023, 58(2): 369-380. |
20 | Gene Ontology Consortium. The Gene Ontology resour-ce: enriching a GOld mine[J]. Nucleic Acids Res, 2021, 49(D1): D325-D334. |
21 | Kanehisa M, Furumichi M, Sato Y, et al. KEGG: integrating viruses and cellular organisms[J]. Nucleic Acids Res, 2021, 49(D1): D545-D551. |
22 | Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucleic Acids Res, 2021, 49(D1): D605-D612. |
23 | Otasek D, Morris JH, Bouças J, et al. Cytoscape automation: empowering workflow-based network analysis[J]. Genome Biol, 2019, 20(1): 185. |
24 | Chin CH, Chen SH, Wu HH, et al. cytoHubba: identifying hub objects and sub-networks from complex interactome[J]. BMC Syst Biol, 2014, 8(): S11. |
25 | Montanez A. SDV: an open source library for synthetic data generation[D]. Cambridge: Massachusetts Institute of Technology, 2018. |
26 | Zhou G, Soufan O, Ewald J, et al. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis[J]. Nucleic Acids Res, 2019, 47(W1): W234-W241. |
27 | Baseri M, Radmand F, Hamedi R, et al. Immunological aspects of dental implant rejection[J]. Biomed Res Int, 2020, 2020: 7279509. |
28 | Fretwurst T, Garaicoa-Pazmino C, Nelson K, et al. Characterization of macrophages infiltrating peri-implantitis lesions[J]. Clin Oral Implants Res, 2020, 31(3): 274-281. |
29 | Li Y, Ling J, Jiang Q. Inflammasomes in alveolar bone loss[J]. Front Immunol, 2021, 12: 691013. |
30 | Kensara A, Hefni E, Williams MA, et al. Microbiological profile and human immune response associated with peri-implantitis: a systematic review[J]. J Prosthodont, 2021, 30(3): 210-234. |
31 | Deng S, Hu Y, Zhou J, et al. TLR4 mediates alveolar bone resorption in experimental peri-implantitis through regulation of CD45+ cell infiltration, RANKL/OPG ratio, and inflammatory cytokine production[J]. J Perio-dontol, 2020, 91(5): 671-682. |
32 | Pan K, Hu Y, Wang Y, et al. RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling[J]. Int J Implant Dent, 2020, 6(1): 15. |
33 | Zhang Q, Liu J, Ma L, et al. Wnt5a is involved in LOX-1 and TLR4 induced host inflammatory response in peri-implantitis[J]. J Periodontal Res, 2020, 55(2): 199-208. |
34 | Vacchini A, Mortier A, Proost P, et al. Differential effects of posttranslational modifications of CXCL8/interleukin-8 on CXCR1 and CXCR2 internalization and signaling properties[J]. Int J Mol Sci, 2018, 19(12): 3768. |
35 | Gabellini C, Trisciuoglio D, Desideri M, et al. Functio-nal activity of CXCL8 receptors, CXCR1 and CXCR2, on human malignant melanoma progression[J]. Eur J Cancer, 2009, 45(14): 2618-2627. |
36 | Tong H, Ke JQ, Jiang FZ, et al. Tumor-associated macrophage-derived CXCL8 could induce ERα suppression via HOXB13 in endometrial cancer[J]. Cancer Lett, 2016, 376(1): 127-136. |
37 | Zhang X, Wang Z, Hu L, et al. Identification of potential genetic biomarkers and target genes of peri-implantitis u-sing bioinformatics tools[J]. Biomed Res Int, 2021, 2021: 1759214. |
38 | Aleksandrowicz P, Brzezińska-Błaszczyk E, Kozłowska E, et al. Analysis of IL-1β, CXCL8, and TNF-α levels in the crevicular fluid of patients with periodontitis or healthy implants[J]. BMC Oral Health, 2021, 21(1): 120. |
39 | Glaría E, Valledor AF. Roles of CD38 in the immune response to infection[J]. Cells, 2020, 9(1): 228. |
40 | Chen D, Wu X, Liu Q, et al. Memory B cell as an indicator of peri-implantitis status: a pilot study[J]. Int J Oral Maxillofac Implants, 2021, 36(1): 86-93. |
41 | Munde EO, Okeyo WA, Raballah E, et al. Association between Fcγ receptor ⅡA, ⅢA and ⅢB genetic polymorphisms and susceptibility to severe malaria anemia in children in western Kenya[J]. BMC Infect Dis, 2017, 17(1): 289. |
42 | Elmer BM, Swanson KA, Bangari DS, et al. Gene deli-very of a modified antibody to Aβ reduces progression of murine Alzheimer’s disease[J]. PLoS One, 2019, 14(12): e0226245. |
43 | Saremi L, Esmaeilzadeh E, Ghorashi T, et al. Association of Fc gamma-receptor genes polymorphisms with chronic periodontitis and Peri-Implantitis[J]. J Cell Biochem, 2019, 120(7): 12010-12017. |
44 | Taylor JP, Tse HM. The role of NADPH oxidases in infectious and inflammatory diseases[J]. Redox Biol, 2021, 48: 102159. |
45 | Denson LA, Jurickova I, Karns R, et al. Clinical and genomic correlates of neutrophil reactive oxygen species production in pediatric patients with Crohn’s disease[J]. Gastroenterology, 2018, 154(8): 2097-2110. |
46 | Ivetic A. A head-to-tail view of L-selectin and its impact on neutrophil behaviour[J]. Cell Tissue Res, 2018, 371(3): 437-453. |
47 | Siddiqui K, George TP, Mujammami M, et al. The association of cell adhesion molecules and selectins (VCAM-1, ICAM-1, E-selectin, L-selectin, and P-selectin) with microvascular complications in patients with type 2 diabetes: a follow-up study[J]. Front Endocrinol (Lausan-ne), 2023, 14: 1072288. |
48 | Xia S, Qu J, Jia H, et al. Overexpression of Forkhead box C1 attenuates oxidative stress, inflammation and a-poptosis in chronic obstructive pulmonary disease[J]. Li-fe Sci, 2019, 216: 75-84. |
49 | Wang J, Li W, Zheng X, et al. Research progress on the forkhead box C1[J]. Oncotarget, 2017, 9(15): 12471-12478. |
50 | Ji Z, Chen S, Cui J, et al. Oct4-dependent FoxC1 acti-vation improves the survival and neovascularization of mesenchymal stem cells under myocardial ischemia[J]. Stem Cell Res Ther, 2021, 12(1): 483. |
51 | Aktar A, Heit B. Role of the pioneer transcription fac-tor GATA2 in health and disease[J]. J Mol Med (Berl), 2023, 101(10): 1191-1208. |
52 | Takai J, Shimada T, Nakamura T, et al. Gata2 heterozygous mutant mice exhibit reduced inflammatory respon-ses and impaired bacterial clearance[J]. iScience, 2021, 24(8): 102836. |
53 | Xie M, Li Z, Li X, et al. Identifying crucial biomarkers in peripheral blood of schizophrenia and screening therapeutic agents by comprehensive bioinformatics analysis[J]. J Psychiatr Res, 2022, 152: 86-96. |
54 | Mitchell JP, Carmody RJ. NF-κB and the Transcriptio-nal Control of Inflammation[J]. Int Rev Cell Mol Biol, 2018, 335: 41-84. |
55 | Cao N, Liu X, Hou Y, et al. 18-α-glycyrrhetinic acid alleviates oxidative damage in periodontal tissue by modulating the interaction of Cx43 and JNK/NF-κB pathways[J]. Front Pharmacol, 2023, 14: 1221053. |
56 | Teng H, Chen S, Fan K, et al. Dexamethasone liposomes alleviate osteoarthritis in miR-204/-211-deficient mice by repolarizing synovial macrophages to M2 phenotypes[J]. Mol Pharm, 2023, 20(8): 3843-3853. |
57 | Zhang N, Zhang RF, Zhang AN, et al. MiR-204 promotes fracture healing via enhancing cell viability of osteoblasts[J]. Eur Rev Med Pharmacol Sci, 2018, 22(1 ): 29-35. |
58 | Li N, Guo X, Liu L, et al. Molecular mechanism of miR-204 regulates proliferation, apoptosis and autophagy of cervical cancer cells by targeting ATF2[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 2529-2535. |
59 | Grieco FA, Schiavo AA, Brozzi F, et al. The miRNAs miR-211-5p and miR-204-5p modulate ER stress in human beta cells[J]. J Mol Endocrinol, 2019, 63(2): 139-149. |
60 | Ye G, Wang P, Xie Z, et al. IRF2-mediated upregulation of lncRNA HHAS1 facilitates the osteogenic differentiation of bone marrow-derived mesenchymal stem cells by acting as a competing endogenous RNA[J]. Clin Transl Med, 2021, 11(6): e429. |
61 | Rigatti SJ. Random forest[J]. J Insur Med, 2017, 47(1): 31-39. |
62 | Carleo G, Troyer M. Solving the quantum many-body problem with artificial neural networks[J]. Science, 2017, 355(6325): 602-606. |
63 | Arji G, Safdari R, Rezaeizadeh H, et al. A systematic literature review and classification of knowledge discove-ry in traditional medicine[J]. Comput Methods Programs Biomed, 2019, 168: 39-57. |
[1] | 严鑫淼, 孙桃兰, 卢雨航, 谭馨, 王卓, 李淼晶. 基于机器学习的四川省12岁儿童龋齿预测模型[J]. 华西口腔医学杂志, 2023, 41(6): 686-693. |
[2] | 岳蔷薇, 徐乐, 张东升. 基于YTHDC2、IGF2BP2和HNRNPC的头颈部鳞状细胞癌N6-甲基腺苷风险模型构建及临床应用评估[J]. 华西口腔医学杂志, 2022, 40(6): 704-709. |
[3] | 曾小丽, 李生娇, 单铮男, 殷俊豪, 姜吉蕊, 郑章龙, 李家. 基于基因芯片整合分析筛选慢性牙周炎相关基因和转录因子[J]. 华西口腔医学杂志, 2021, 39(6): 633-641. |
[4] | 张颖, 贾松菠, 李帆, 李姗姗, 张利娟, 谭凯璇, 卢洁, 杨芳. 低龄儿童龋病相关的唾液生化指标研究[J]. 华西口腔医学杂志, 2021, 39(3): 300-305. |
[5] | 杨利洒,石从郁,梁宇豪,刘曈,侯笑茹,田旭东,王晓毅. 头颈部鳞癌程序性死亡配体-1的共表达基因及调控网络的生物信息学分析[J]. 华西口腔医学杂志, 2019, 37(5): 516-520. |
[6] | 郭丽宏;史俊南. 变形链球菌高毒力株特异DNA片段的序列测定及生物信息学分析[J]. 华西口腔医学杂志, 2006, 24(06): 541-545. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||