华西口腔医学杂志 ›› 2020, Vol. 38 ›› Issue (5): 566-570.doi: 10.7518/hxkq.2020.05.016
收稿日期:2019-02-19
									
				
											修回日期:2020-05-17
									
				
									
				
											出版日期:2020-10-01
									
				
											发布日期:2020-10-14
									
			通讯作者:
					陈文川
											E-mail:axgang52@163.com;hxkqcwc@scu.edu.cn
												作者简介:敖小刚,住院医师,硕士,E-mail:axgang52@163.com
				
							基金资助:
        
               		Ao Xiaogang( ), Chen Wenchuan(
), Chen Wenchuan( )
)
			  
			
			
			
                
        
    
Received:2019-02-19
									
				
											Revised:2020-05-17
									
				
									
				
											Online:2020-10-01
									
				
											Published:2020-10-14
									
			Contact:
					Chen Wenchuan   
											E-mail:axgang52@163.com;hxkqcwc@scu.edu.cn
												摘要:
近年来,低温等离子体应用于钛表面改性成为材料改性的研究方向之一。体外研究发现它通过改变钛表面性质,对细菌的定植和成骨细胞的生物学行为等产生影响。体内研究表明低温等离子体改性能促进钛种植体的骨结合过程。本文就低温等离子体改性钛种植体表面影响骨结合的体内外研究现状作一综述。
中图分类号:
敖小刚, 陈文川. 低温等离子体促进钛种植体骨结合的研究进展[J]. 华西口腔医学杂志, 2020, 38(5): 566-570.
Ao Xiaogang, Chen Wenchuan. Research progress on the osseointegration of titanium implants promoted by cold atmospheric plasma[J]. West China Journal of Stomatology, 2020, 38(5): 566-570.
| [1] | Henningsen A, Smeets R, Heuberger R , et al. Changes in surface characteristics of titanium and zirconia after surface treatment with ultraviolet light or non-thermal plasma[J]. Eur J Oral Sci, 2018,126(2):126-134. doi: 10.1111/eos.12400 URL pmid: 29336070 | 
| [2] | von Wilmowsky C, Moest T, Nkenke E , et al. Implants in bone: part Ⅱ. Research on implant osseointegration[J]. Oral Maxillofac Surg, 2014,18(4):355-372. doi: 10.1007/s10006-013-0397-2 URL pmid: 23430020 | 
| [3] | Att W, Ogawa T . Biological aging of implant surfaces and their restoration with ultraviolet light treatment: a novel understanding of osseointegration[J]. Int J Oral Maxillofac Implants, 2012,27(4):753-761. URL pmid: 22848875 | 
| [4] | Monje A, Catena A, Borgnakke WS . Association between diabetes mellitus/hyperglycaemia and peri-implant diseases: systematic review and Meta-analysis[J]. J Clin Periodontol, 2017,44(6):636-648. doi: 10.1111/jcpe.12724 URL pmid: 28346753 | 
| [5] | Temmerman A, Rasmusson L, Kübler A , et al. A prospective, controlled, multicenter study to evaluate the clinical outcome of implant treatment in women with osteoporosis/osteopenia: 5-year results[J]. J Dent Res, 2019,98(1):84-90. doi: 10.1177/0022034518798804 URL pmid: 30205020 | 
| [6] | Bosshardt DD, Chappuis V, Buser D . Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions[J]. Periodontol 2000, 2017,73(1):22-40. doi: 10.1111/prd.12179 URL pmid: 28000277 | 
| [7] | Matthes R, Duske K, Kebede TG , et al. Osteoblast growth, after cleaning of biofilm-covered titanium discs with air-polishing and cold plasma[J]. J Clin Periodontol, 2017,44(6):672-680. doi: 10.1111/jcpe.12720 URL pmid: 28303583 | 
| [8] | Lee JH, Jeong WS, Seo SJ , et al. Non-thermal atmospheric pressure plasma functionalized dental implant for enhancement of bacterial resistance and osseointegration[J]. Dent Mater, 2017,33(3):257-270. doi: 10.1016/j.dental.2016.11.011 URL pmid: 28088458 | 
| [9] | Danna NR, Beutel BG, Tovar N , et al. Assessment of atmospheric pressure plasma treatment for implant osseointegration[J]. Biomed Res Int, 2015,2015:761718. doi: 10.1155/2015/761718 URL pmid: 26090443 | 
| [10] | Preissner S, Wirtz HC, Tietz AK , et al. Bactericidal efficacy of tissue tolerable plasma on microrough titanium dental implants: an in-vitro-study[J]. J Biophotonics, 2016,9(6):637-644. doi: 10.1002/jbio.201500189 URL pmid: 26349849 | 
| [11] | Kim JH, Lee MA, Han GJ , et al. Plasma in dentistry: a review of basic concepts and applications in dentistry[J]. Acta Odontol Scand, 2014,72(1):1-12. doi: 10.3109/00016357.2013.795660 URL | 
| [12] | 柏娜, 朱智敏 . 低温等离子体在口腔医学中的研究进展[J]. 口腔医学研究, 2014,30(6):583-586. | 
| Bai N, Zhu ZM . Research progress of cold atmospheric plasma in stomatology[J]. J Oral Sci Res, 2014,30(6):583-586. | |
| [13] | Çelik B, Çapar İD, İbiş F , et al. Deionized water can substitute common bleaching agents for nonvital tooth bleaching when treated with non-thermal atmospheric plasma[J]. J Oral Sci, 2019,61(1):103-110. doi: 10.2334/josnusd.17-0419 URL pmid: 30713266 | 
| [14] | Liu TS, Wu LF, Babu JP , et al. Effects of atmospheric non-thermal argon/oxygen plasma on biofilm viability and hydrophobicity of oral bacteria[J]. Am J Dent, 2017,30(1):52-56. URL pmid: 29178715 | 
| [15] | Li YL, Sun K, Ye GP , et al. Evaluation of cold plasma treatment and safety in disinfecting 3-week root canal Enterococcus faecalis biofilm in vitro[J]. J Endod, 2015,41(8):1325-1330. doi: 10.1016/j.joen.2014.10.020 URL pmid: 26027875 | 
| [16] | Gu MM, Yu QS, Tan JW , et al. Improving bond strength of ground and intact enamel to mild self-etch adhesive by plasma treatment[J]. Clin Plasma Med, 2016,4(1):29-33. doi: 10.1016/j.cpme.2016.03.001 URL | 
| [17] | Sola-Ruiz MF, Perez-Martinez C, Labaig-Rueda C , et al. Behavior of human osteoblast cells cultured on titanium discs in relation to surface roughness and presence of melatonin[J]. Int J Mol Sci, 2017,18(4):E823. doi: 10.3390/ijms18040823 URL pmid: 28406458 | 
| [18] | Kim IH, Son JS, Kwon TY , et al. Effect of atmospheric plasma treatment to titanium surface on initial osteoblast-like cell spreading[J]. J Nanosci Nanotechnol, 2015,15(1):134-137. doi: 10.1166/jnn.2015.8393 URL pmid: 26328317 | 
| [19] | Henningsen A, Smeets R, Hartjen P , et al. Photofunctionalization and non-thermal plasma activation of titanium surfaces[J]. Clin Oral Investig, 2018,22(2):1045-1054. doi: 10.1007/s00784-017-2186-z URL pmid: 28730456 | 
| [20] | Ulu M, Pekbagriyanik T, Ibis F , et al. Antibiofilm efficacies of cold plasma and Er: YAG laser on Staphylococcus aureus biofilm on titanium for nonsurgical treatment of peri-implantitis[J]. Niger J Clin Pract, 2018,21(6):758-765. doi: 10.4103/njcp.njcp_261_17 URL pmid: 29888724 | 
| [21] | Lu MM, Shao D, Wang P , et al. Enhanced osteoblast adhesion on amino-functionalized titanium surfaces through combined plasma enhanced chemical vapor deposition (PECVD) method[J]. RSC Adv, 2016,6(86):82688-82697. doi: 10.1039/C6RA08922D URL | 
| [22] | 刘想梅, 李鹏辉, 王文浩 , 等. 等离子体聚合改性对医用钛表面性能的影响[J]. 稀有金属材料与工程, 2014,43(Supple 1):291-295. | 
| Liu XM, Li PH, Wang WH , et al. Effects of plasma polymerization on the performance of biomedical titanium[J]. Rare Met Mater Eng, 2014,43(Sup1):291-295. doi: 10.1016/S1875-5372(14)60061-8 URL | |
| [23] | Choi YR, Kwon JS, Song DH , et al. Surface modification of biphasic calcium phosphate scaffolds by non-thermal atmospheric pressure nitrogen and air plasma treatment for improving osteoblast attachment and proliferation[J]. Thin Solid Films, 2013,547:235-240. doi: 10.1016/j.tsf.2013.02.038 URL | 
| [24] | Walter MS, Frank MJ, Sunding MF , et al. Increased reactivity and in vitro cell response of titanium based implant surfaces after anodic oxidation[J]. J Mater Sci Mater Med, 2013,24(12):2761-2773. doi: 10.1007/s10856-013-5020-4 URL pmid: 23912792 | 
| [25] | Malkoç S, Öztürk F, Çörekçi B , et al. Real-time cell analysis of the cytotoxicity of orthodontic mini-implants on human gingival fibroblasts and mouse osteoblasts[J]. Am J Orthod Dentofacial Orthop, 2012,141(4):419-426. doi: 10.1016/j.ajodo.2011.12.009 URL pmid: 22464523 | 
| [26] | Yang Y, Guo JS, Zhou X , et al. A novel cold atmospheric pressure air plasma jet for peri-implantitis treatment: an in vitro study[J]. Dent Mater J, 2018,37(1):157-166. doi: 10.4012/dmj.2017-030 URL pmid: 29176301 | 
| [27] | 赵信义 . 口腔材料学[M]. 北京: 人民卫生出版社, 2012: 38-39. | 
| Zhao XY. Dental materials[M]. Beijing: People’s Medical Publishing House, 2012: 38-39. | |
| [28] | Hong J, Kurt S, Thor A . A hydrophilic dental implant surface exhibit thrombogenic properties in vitro[J]. Clin Implant Dent Relat Res, 2013,15(1):105-112. doi: 10.1111/j.1708-8208.2011.00362.x URL pmid: 21745323 | 
| [29] | Seo HY, Kwon JS, Choi YR , et al. Cellular attachment and differentiation on titania nanotubes exposed to air- or nitrogen-based non-thermal atmospheric pressure plasma[J]. PLoS One, 2014,9(11):e113477. doi: 10.1371/journal.pone.0113477 URL pmid: 25420027 | 
| [30] | Kim IH, Son JS, Kwon TY , et al. Effect of atmospheric plasma treatment to titanium surface on initial osteoblast-like cell spreading[J]. J Nanosci Nanotechnol, 2015,15(1):134-137. doi: 10.1166/jnn.2015.8393 URL pmid: 26328317 | 
| [31] | Lafaurie GI, Sabogal MA, Castillo DM , et al. Microbiome and microbial biofilm profiles of peri-implantitis: a systematic review[J]. J Periodontol, 2017,88(10):1066-1089. doi: 10.1902/jop.2017.170123 URL pmid: 28625077 | 
| [32] | Lee MJ, Kwon JS, Jiang HB , et al. The antibacterial effect of non-thermal atmospheric pressure plasma treatment of titanium surfaces according to the bacterial wall structure[J]. Sci Rep, 2019,9(1):1938. doi: 10.1038/s41598-019-39414-9 URL pmid: 30760871 | 
| [33] | Jeong WS, Kwon JS, Lee JH , et al. Bacterial attachment on titanium surfaces is dependent on topography and chemical changes induced by nonthermal atmospheric pressure plasma[J]. Biomed Mater, 2017,12(4):045015. doi: 10.1088/1748-605X/aa734e URL pmid: 28746053 | 
| [34] | Chen SQ, Li Y, Cheng YF . Nanopatterning of steel by one-step anodization for anti-adhesion of bacteria[J]. Sci Rep, 2017,7(1):5326. doi: 10.1038/s41598-017-05626-0 URL pmid: 28706204 | 
| [35] | Nesbitt WE, Doyle RJ, Taylor KG . Hydrophobic interactions and the adherence of Streptococcus sanguis to hydroxylapatite[J]. Infect Immun, 1982,38(2):637-644. doi: 10.1128/IAI.38.2.637-644.1982 URL pmid: 6292108 | 
| [36] | Damiati L, Eales MG, Nobbs AH , et al. Impact of surface topography and coating on osteogenesis and bacterial attachment on titanium implants[J]. J Tissue Eng, 2018,9:2041731418790694. doi: 10.1177/2041731418790694 URL pmid: 30116518 | 
| [37] | Hung YW, Chen HL, Lee LT , et al. Effects of non-thermal plasma on sandblasted titanium dental implants in beagle dogs[J]. J Chin Med Assoc, 2018,81(10):920-925. doi: 10.1016/j.jcma.2018.03.004 URL pmid: 29778553 | 
| [1] | 张敏, 敖小刚, 郑铮, 陈文川. 低温等离子体促进人牙龈上皮细胞在钛表面的黏附[J]. 华西口腔医学杂志, 2022, 40(3): 285-292. | 
| [2] | 张洁, 祝颂松, 姜楠. 微纳米共存的磷酸化涂层对钛植入体骨结合的影响[J]. 华西口腔医学杂志, 2021, 39(5): 531-539. | 
| [3] | 王亚楠, 贾婷婷, 徐欣, 张东姣. 系统性药物对种植体骨结合影响的动物实验研究进展[J]. 华西口腔医学杂志, 2020, 38(2): 211-217. | 
| [4] | 杨帮成,周学东,于海洋,吴尧,包崇云,满毅,程磊,孙瑶. 钛种植体表面改性方法[J]. 华西口腔医学杂志, 2019, 37(2): 124-129. | 
| [5] | 魏霆,张欣蔚,孙惠强,毛梦芸. 选择性激光烧结多孔钛种植体及其性能研究[J]. 华西口腔医学杂志, 2018, 36(5): 532-538. | 
| [6] | 姚洋, 杜宇, 古霞, 光梦凯, 黄波, 宫苹. 局部注射外源性神经生长因子促进小鼠钛种植体周骨胶原早期成熟的研究[J]. 华西口腔医学杂志, 2018, 36(2): 128-132. | 
| [7] | 罗翠芬, 彭国光. 生骨片对后牙区种植体骨结合的影响[J]. 华西口腔医学杂志, 2017, 35(5): 498-501. | 
| [8] | 王买全 彭利伟 李运峰. 全身应用催产素对骨质疏松大鼠种植体骨结合的影响[J]. 华西口腔医学杂志, 2016, 34(4): 332-335. | 
| [9] | 苟诗然,张帆,李萌婷,黄婷,郑立舸,. 钛表面羟磷灰石/壳聚糖-转化生长因子-β1缓释微球复合涂层的制备及其对成骨细胞黏附与增殖的影响[J]. 华西口腔医学杂志, 2016, 34(3): 229-233. | 
| [10] | 李欣 姜志红 柳忠豪. 浓缩生长因子提取液对钛片表面MC3T3-E1细胞增殖分化的影响[J]. 华西口腔医学杂志, 2015, 33(1): 84-87. | 
| [11] | 徐倩 冯青 欧俊 孙红. 层层静电自组装构建载药种植体的研究[J]. 华西口腔医学杂志, 2014, 32(6): 537-541. | 
| [12] | 孙科 杨小慧 叶帼嫔 潘红 王静. 评价两种低温等离子体对粪肠球菌生物膜作用的体外实验研究[J]. 华西口腔医学杂志, 2013, 31(2): 195-198. | 
| [13] | 尹路 肖云. 渗氮类金刚石薄膜应用于纯钛后的细菌黏附变化[J]. 华西口腔医学杂志, 2011, 29(05): 526-528. | 
| [14] | 尹路 姚江武 许德文. 沉积时间对渗氮类金刚石碳膜表面颜色的影响[J]. 华西口腔医学杂志, 2010, 28(05): 543-546. | 
| [15] | 李剑平 张望群 于静 戚孟春 胡静 王东胜. 实验性骨质疏松对种植体周自体骨移植愈合影响的研究[J]. 华西口腔医学杂志, 2010, 28(04): 435-438. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||