1 |
Li J, Zhang H, Han Y, et al. Targeted and responsive biomaterials in osteoarthritis[J]. Theranostics, 2023, 13(3): 931-954.
|
2 |
Deng Z, Gao X, Sun X, et al. Characterization of articular cartilage homeostasis and the mechanism of superior cartilage regeneration of MRL/MpJ mice[J]. FASEB J, 2019, 33(8): 8809-8821.
|
3 |
Armiento AR, Alini M, Stoddart MJ. Articular fibrocartilage—Why does hyaline cartilage fail to repair[J]. Adv Drug Deliv Rev, 2019, 146: 289-305.
|
4 |
Roseti L, Desando G, Cavallo C, et al. Articular cartilage regeneration in osteoarthritis[J]. Cells, 2019, 8(11): 1305.
|
5 |
Davis S, Roldo M, Blunn G, et al. Influence of the mecha-nical environment on the regeneration of osteochondral defects[J]. Front Bioeng Biotechnol, 2021, 9: 603408.
|
6 |
Carballo CB, Nakagawa Y, Sekiya I, et al. Basic science of articular cartilage[J]. Clin Sports Med, 2017, 36(3): 413-425.
|
7 |
Menezes R, Vincent R, Osorno L, et al. Biomaterials and tissue engineering approaches using glycosaminoglycans for tissue repair: lessons learned from the native extracellular matrix[J]. Acta Biomater, 2023, 163: 210-227.
|
8 |
Yu L, Cavelier S, Hannon B, et al. Recent development in multizonal scaffolds for osteochondral regeneration[J]. Bioact Mater, 2023, 25: 122-159.
|
9 |
Soares da Costa D, Reis RL, Pashkuleva I. Sulfation of glycosaminoglycans and its implications in human heal-th and disorders[J]. Annu Rev Biomed Eng, 2017, 19: 1-26.
|
10 |
Kang Z, Zhou Z, Wang Y, et al. Bio-based strategies for producing glycosaminoglycans and their oligosacchari-des[J]. Trends Biotechnol, 2018, 36(8): 806-818.
|
11 |
Calamia V, Fernández-Puente P, Mateos J, et al. Pharmacoproteomic study of three different chondroitin sulfate compounds on intracellular and extracellular human chon-drocyte proteomes[J]. Mol Cell Proteomics, 2012, 11(6): M111.013417.
|
12 |
Rinker TE, Philbrick BD, Hettiaratchi MH, et al. Microparticle-mediated sequestration of cell-secreted proteins to modulate chondrocytic differentiation[J]. Acta Biomater, 2018, 68: 125-136.
|
13 |
Cho H, Kim J, Kim S, et al. Dual delivery of stem cells and insulin-like growth factor-1 in coacervate-embedded composite hydrogels for enhanced cartilage regeneration in osteochondral defects[J]. J Control Release, 2020, 327: 284-295.
|
14 |
Uzieliene I, Bironaite D, Pachaleva J, et al. Chondroitin sulfate-tyramine-based hydrogels for cartilage tissue repair[J]. Int J Mol Sci, 2023, 24(4): 3451.
|
15 |
Levinson C, Lee M, Applegate LA, et al. An injectable heparin-conjugated hyaluronan scaffold for local delive-ry of transforming growth factor β1 promotes successful chondrogenesis[J]. Acta Biomater, 2019, 99: 168-180.
|
16 |
Sang S, Mao X, Cao Y, et al. 3D bioprinting using synovium-derived MSC-laden photo-cross-linked ECM bioink for cartilage regeneration[J]. ACS Appl Mater Interfaces, 2023. doi: 10.1021/acsami.2c19058 .
|
17 |
Caterson B, Melrose J. Keratan sulfate, a complex glycosaminoglycan with unique functional capability[J]. Gly-cobiology, 2018, 28(4): 182-206.
|
18 |
Chen S, Chen W, Chen Y, et al. Chondroitin sulfate modified 3D porous electrospun nanofiber scaffolds promote cartilage regeneration[J]. Mater Sci Eng C Mater Biol A-ppl, 2021, 118: 111312.
|
19 |
Hogwood J, Mulloy B, Lever R, et al. Pharmacology of heparin and related drugs: an update[J]. Pharmacol Rev, 2023, 75(2): 328-379.
|
20 |
Yao Y, Wang Y. Atdc5: an excellent in vitro model cell line for skeletal development[J]. J Cell Biochem, 2013, 114(6): 1223-1229.
|
21 |
Xu R, Wei Y, Yin X, et al. miR-20a suppresses chondrogenic differentiation of ATDC5 cells by regulating Atg7[J]. Sci Rep, 2019, 9(1): 9243.
|
22 |
Tat SK, Pelletier JP, Mineau F, et al. Variable effects of 3 different chondroitin sulfate compounds on human osteoarthritic cartilage/chondrocytes: relevance of purity and production process[J]. J Rheumatol, 2010, 37(3): 656-664.
|
23 |
Sun K, Luo J, Guo J, et al. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: a narrative review[J]. O-steoarthritis Cartilage, 2020, 28(4): 400-409.
|
24 |
Ma L, Zhang R, Li D, et al. Fluoride regulates chondrocyte proliferation and autophagy via PI3K/AKT/mTOR signaling pathway[J]. Chem Biol Interact, 2021, 349: 109659.
|
25 |
Thielen NGM, van der Kraan PM, van Caam APM. TGF-β/BMP signaling pathway in cartilage homeostasis[J]. Cells, 2019, 8(9): 969.
|
26 |
Lefebvre V, Angelozzi M, Haseeb A. Sox9 in cartilage development and disease[J]. Curr Opin Cell Biol, 2019, 61: 39-47.
|
27 |
Liu ZM, Shen PC, Lu CC, et al. Suramin enhances chondrogenic properties by regulating the p67phox/PI3K/AKT/SOX9 signalling pathway[J]. Bone Joint Res, 2022, 11(10): 723-738.
|
28 |
Goto K, Kimura T, Kitamura N, et al. Synthetic PAMPS gel activates BMP/Smad signaling pathway in ATDC5 cells, which plays a significant role in the gel-induced chondrogenic differentiation[J]. J Biomed Mater Res A, 2016, 104(3): 734-746.
|
29 |
Wang Y, Fan X, Xing L, et al. Wnt signaling: a promising target for osteoarthritis therapy[J]. Cell Commun Signal, 2019, 17(1): 97.
|
30 |
Najafi SMAA. The canonical Wnt signaling (Wnt/β-ca-tenin pathway): a potential target for cancer prevention and therapy[J]. Iran Biomed J, 2020, 24(5): 269-280.
|
31 |
Volleman TNE, Schol J, Morita K, et al. Wnt3a and wnt-5a as potential chondrogenic stimulators for nucleus pul-posus cell induction: a comprehensive review[J]. Neurospine, 2020, 17(1): 19-35.
|
32 |
Nalesso G, Sherwood J, Bertrand J, et al. WNT-3A modulates articular chondrocyte phenotype by activating bo-th canonical and noncanonical pathways[J]. J Cell Biol, 2011, 193(3): 551-564.
|
33 |
Zhu M, Tang D, Wu Q, et al. Activation of beta-catenin signaling in articular chondrocytes leads to osteoarthritis-like phenotype in adult beta-catenin conditional activation mice[J]. J Bone Miner Res, 2009, 24(1): 12-21.
|
34 |
Pizzute T, He F, Zhang XB, et al. Impact of Wnt signals on human intervertebral disc cell regeneration[J]. J Orthop Res, 2018, 36(12): 3196-3207.
|
35 |
Fischer L, Boland G, Tuan RS. Wnt-3A enhances bone morphogenetic protein-2-mediated chondrogenesis of mu-rine C3H10T1/2 mesenchymal cells[J]. J Biol Chem, 2002, 277(34): 30870-30878.
|
36 |
Niu Q, Li F, Zhang L, et al. Role of the Wnt/β-catenin signaling pathway in the response of chondrocytes to mechanical loading[J]. Int J Mol Med, 2016, 37(3): 755-762.
|
37 |
Zhang L. Glycosaminoglycan (gag) biosynthesis and gag-binding proteins[J]. Prog Mol Biol Transl Sci, 2010, 93: 1-17.
|
38 |
Vallet SD, Berthollier C, Ricard-Blum S. The glycosaminoglycan interactome 2.0[J]. Am J Physiol Cell Physiol, 2022, 322(6): C1271-C1278.
|
39 |
Seto SP, Miller T, Temenoff JS. Effect of selective heparin desulfation on preservation of bone morphogenetic protein-2 bioactivity after thermal stress[J]. Bioconjug Chem, 2015, 26(2): 286-293.
|
40 |
Arlov Ø, Öztürk E, Steinwachs M, et al. Biomimetic sulphated alginate hydrogels suppress IL-1β-induced inflammatory responses in human chondrocytes[J]. Eur Cell Mater, 2017, 33: 76-89.
|