| [1] | Poli PP, Cicciu M, Beretta M , et al. Peri-implant mucositis and peri-implantitis: a current understanding of their diagnosis, clinical implications, and a report of treatment using a combined therapy approach[J]. J Oral Implantol, 2017,43(1):45-50. | 
																													
																							| [2] | Ou KL, Weng CC, Lin YH , et al. A promising of alloying modified beta-type Titanium-Niobium implant for biomedical applications: microstructural characteristics, in vitro biocompatibility and antibacterial performance[J]. J Alloys Compounds, 2017,697:231-238. | 
																													
																							| [3] | Derks J, Tomasi C . Peri-implant health and disease. A systematic review of current epidemiology[J]. J Clin Periodontol, 2015,42:S158-S171. | 
																													
																							| [4] | Huang HL, Chang YY, Lai MC , et al. Antibacterial TaN-Ag coatings on titanium dental implants[J]. Surface Coat Technol, 2010,205(5):1636-1641. | 
																													
																							| [5] | Nayak AG, Fernandes A, Kulkarni R , et al. Efficacy of antibacterial sealing gel and O-ring to prevent microleakage at the implant abutment interface: an in vitro study[J]. J Oral Implantol, 2014,40(1):11-14. | 
																													
																							| [6] | Almela T, Al-Sahaf S, Bolt R , et al. Characterization of multilayered tissue-engineered human alveolar bone and gingival mucosa[J]. Tissue Eng Part C Methods, 2018,24(2):99-107. | 
																													
																							| [7] | Sanchez VC, Jachak A, Hurt RH , et al. Biological interactions of graphene-family nanomaterials: an interdisciplinary review[J]. Chem Res Toxicol, 2012,25(1):15-34. | 
																													
																							| [8] | Jin JF, Zhang L, Shi MQ , et al. Ti-GO-Ag nanocomposite: the effect of content level on the antimicrobial activity and cytotoxicity[J]. Int J Nanomedicine, 2017,12:4209-4224. | 
																													
																							| [9] | Hu WB, Peng C, Luo WJ , et al. Graphene-based antibacterial paper[J]. ACS Nano, 2010,4(7):4317-4323. | 
																													
																							| [10] | Liu SB, Zeng TH, Hofmann M , et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress[J]. ACS Nano, 2011,5(9):6971-6980. | 
																													
																							| [11] | Ruiz ON, Fernando KAS, Wang BJ , et al. Graphene oxide: a nonspecific enhancer of cellular growth[J]. ACS Nano, 2011,5(10):8100-8107. | 
																													
																							| [12] | Hui L, Piao JG, Auletta J , et al. Availability of the basal planes of graphene oxide determines whether it is antibacterial[J]. ACS Appl Mater Interfaces, 2014,6(15):13183-13190. | 
																													
																							| [13] | He J, Zhu X, Qi Z , et al. Killing dental pathogens using antibacterial graphene oxide[J]. ACS App Mater Interfaces, 2015,7(9):5605-5611. | 
																													
																							| [14] | Thomsen C, Reich S . Double resonant raman scattering in graphite[J]. Phys Rev Lett, 2000,85(24):5214-5217. | 
																													
																							| [15] | Li RB, Guiney LM, Chang CH , et al. Surface oxidation of graphene oxide determines membrane damage, lipid peroxidation, and cytotoxicity in macrophages in a pulmonary toxicity model[J]. ACS Nano, 2018,12(2):1390-1402. | 
																													
																							| [16] | Singh SK, Singh MK, Nayak MK , et al. Thrombus inducing property of atomically thin graphene oxide sheets[J]. ACS Nano, 2011,5(6):4987-4996. | 
																													
																							| [17] | Chang Y, Yang ST, Liu JH , et al. In vitro toxicity evaluation of graphene oxide on A549 cells[J]. Toxicol Lett, 2011,200(3):201-210. |