West China Journal of Stomatology ›› 2024, Vol. 42 ›› Issue (6): 689-698.doi: 10.7518/hxkq.2024.2024262
Xu Rui1(), Pan Zhao2, Zou Duohong3(
)
Received:
2024-07-14
Revised:
2024-08-03
Online:
2024-12-01
Published:
2024-11-29
Contact:
Zou Duohong
E-mail:dentistxr@126.com;zouduohongyy@163.com
Supported by:
CLC Number:
Xu Rui, Pan Zhao, Zou Duohong. Design strategy of hydrogel wound dressings based on oral special environment[J]. West China Journal of Stomatology, 2024, 42(6): 689-698.
Add to citation manager EndNote|Ris|BibTeX
1 | Politis C, Schoenaers J, Jacobs R, et al. Wound healing problems in the mouth[J]. Front Physiol, 2016, 7: 507. |
2 | Ko KI, Sculean A, Graves DT. Diabetic wound healing in soft and hard oral tissues[J]. Transl Res, 2021, 236: 72-86. |
3 | Ding Y, Zhu Z, Zhang X, et al. Novel functional dres-sing materials for intraoral wound care[J]. Adv Healthc Mater, 2024. doi: 10.1002/adhm.202400912 . |
4 | Dawes C, Wong DTW. Role of saliva and salivary diagnostics in the advancement of oral health[J]. J Dent Res, 2019, 98(2): 133-141. |
5 | Hatcher DC. Anatomy of the mandible, temporomandi-bular joint, and dentition[J]. Neuroimaging Clin N Am, 2022, 32(4): 749-761. |
6 | Baker JL, Mark Welch JL, Kauffman KM, et al. The oral microbiome: diversity, biogeography and human health[J]. Nat Rev Microbiol, 2024, 22(2): 89-104. |
7 | Jia B, Zhang B, Li J, et al. Emerging polymeric mate-rials for treatment of oral diseases: design strategy towards a unique oral environment[J]. Chem Soc Rev, 2024, 53(7): 3273-3301. |
8 | Huang M, Huang Y, Liu H, et al. Hydrogels for the treatment of oral and maxillofacial diseases: current resear-ch, challenges, and future directions[J]. Biomater Sci, 2022, 10(22): 6413-6446. |
9 | Buwalda SJ, Boere KW, Dijkstra PJ, et al. Hydrogels in a historical perspective: from simple networks to smart materials[J]. J Control Release, 2014, 190: 254-273. |
10 | Li S, Dong S, Xu W, et al. Antibacterial hydrogels[J]. Adv Sci, 2018, 5: 1700527. |
11 | Yang J, Zhang YS, Yue K, et al. Cell-laden hydrogels for osteochondral and cartilage tissue engineering[J]. Acta Biomater, 2017, 57: 1-25. |
12 | Roorda WE, Boddé HE, De Boer AG, et al. Synthetic hydrogels as drug delivery systems[J]. Pharm Weekbl Sci, 1986, 8(3): 165-189. |
13 | Anseth KS, Bowman CN, Brannon-Peppas L. Mechanical properties of hydrogels and their experimental determination[J]. Biomaterials, 1996, 17(17): 1647-1657. |
14 | Francis L, Greco KV, Boccaccini AR, et al. Development of a novel hybrid bioactive hydrogel for future cli-nical applications[J]. J Biomater Appl, 2018, 33(3): 447-465. |
15 | Catoira MC, Fusaro L, Di Francesco D, et al. Overview of natural hydrogels for regenerative medicine applications[J]. J Mater Sci Mater Med, 2019, 30(10): 115. |
16 | Spang MT, Christman KL. Extracellular matrix hydrogel therapies: in vivo applications and development[J]. Acta Biomater, 2018, 68: 1-14. |
17 | Bao Z, Xian C, Yuan Q, et al. Natural polymer-based hydrogels with enhanced mechanical performances: preparation, structure, and property[J]. Adv Healthc Mater, 2019, 8(17): e1900670. |
18 | Kolawole OM, Lau WM, Khutoryanskiy VV. Methacrylated chitosan as a polymer with enhanced mucoadhesive properties for transmucosal drug delivery[J]. Int J Pharm, 2018, 550(1/2): 123-129. |
19 | Zhu Z, Guan Z, Jia S, et al. Au@Pt nanoparticle encapsulated target-responsive hydrogel with volumetric bar-chart chip readout for quantitative point-of-care testing[J]. Angew Chem Int Ed Engl, 2014, 53(46): 12503-12507. |
20 | Dimatteo R, Darling NJ, Segura T. In situ forming injec-table hydrogels for drug delivery and wound repair[J]. Adv Drug Deliv Rev, 2018, 127: 167-184. |
21 | Bernkop-Schnürch A. Thiomers: a new generation of mucoadhesive polymers[J]. Adv Drug Deliv Rev, 2005, 57(11): 1569-1582. |
22 | Dong Y, Pang H, Yang HB, et al. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission[J]. Angew Chem Int Ed Engl, 2013, 52(30): 7800-7804. |
23 | Chatterjee B, Amalina N, Sengupta P, et al. Mucoadhesive polymers and their mode of action: a recent update[J]. J Appl Pharm Sci, 2017, 7: 195-203. |
24 | Jelkmann M, Bonengel S, Menzel C, et al. New perspectives of starch: synthesis and in vitro assessment of no-vel thiolated mucoadhesive derivatives[J]. Int J Pharm, 2018, 546(1/2): 70-77. |
25 | Laffleur F. Mucoadhesive polymers for buccal drug delivery[J]. Drug Dev Ind Pharm, 2014, 40(5): 591-598. |
26 | Yang J, Bai R, Chen B, et al. Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics[J]. Adv Funct Mater, 2020, 30(2): 1901693. |
27 | Wuttig M, Deringer VL, Gonze X, et al. Incipient me-tals: functional materials with a unique bonding mechanism[J]. Adv Mater, 2018, 30(51): e1803777. |
28 | Ma S, Wu Y, Zhou F. Bioinspired synthetic wet adhesives: from permanent bonding to reversible regulation[J]. Curr Opin Colloid Interface Sci, 2020, 47: 84-98. |
29 | Morales JO, Brayden DJ. Buccal delivery of small molecules and biologics: of mucoadhesive polymers, films, and nanoparticles[J]. Curr Opin Pharmacol, 2017, 36: 22-28. |
30 | Salamat-Miller N, Chittchang M, Johnston TP. The use of mucoadhesive polymers in buccal drug delivery[J]. Adv Drug Deliv Rev, 2005, 57(11): 1666-1691. |
31 | Steck J, Kim J, Yang J, et al. Topological adhesion. I. Rapid and strong topohesives[J]. Extreme Mech Lett, 2020, 39: 100803. |
32 | Daristotle JL, Zaki ST, Lau LW, et al. Pressure-sensitive tissue adhesion and biodegradation of viscoelastic po-lymer blends[J]. ACS Appl Mater Interfaces, 2020, 12(14): 16050-16057. |
33 | Sennakesavan G, Mostakhdemin M, Dkhar LK, et al. Acrylic acid/acrylamide based hydrogels and its pro-perties—A review[J]. Polym Degrad Stab, 2020, 180: 109308. |
34 | Macdougall LJ, Anseth K. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(α- hydroxy acid) diacrylate macromers[J]. Macromolecules, 2020, 53(7): 2295-2298. |
35 | Zhang X, Li Z, Yang P, et al. Polyphenol scaffolds in tissue engineering[J]. Mater Horiz, 2021, 8(1): 145-167. |
36 | Hong S, Pirovich D, Kilcoyne A, et al. Supramolecular metallo-bioadhesive for minimally invasive use[J]. Adv Mater, 2016, 28(39): 8675-8680. |
37 | Lee HA, Park E, Lee H. Polydopamine and its derivati-ve surface chemistry in material science: a focused review for studies at KAIST[J]. Adv Mater, 2020, 32(35): e1907505. |
38 | Yang J, Saggiomo V, Velders AH, et al. Reaction pa-thways in catechol/primary amine mixtures: a window on crosslinking chemistry[J]. PLoS One, 2016, 11(12): e0166490. |
39 | Hu H, Xu FJ. Rational design and latest advances of polysaccharide-based hydrogels for wound healing[J]. Biomater Sci, 2020, 8(8): 2084-2101. |
40 | Berradi A, Aziz F, Achaby ME, et al. A comprehensive review of polysaccharide-based hydrogels as promising biomaterials[J]. Polymers (Basel), 2023, 15(13): 2908. |
41 | Hu S, Pei X, Duan L, et al. A mussel-inspired film for adhesion to wet buccal tissue and efficient buccal drug delivery[J]. Nat Commun, 2021, 12(1): 1689. |
42 | Boda SK, Fischer NG, Ye Z, et al. Dual oral tissue adhesive nanofiber membranes for pH-responsive delivery of antimicrobial peptides[J]. Biomacromolecules, 2020, 21(12): 4945-4961. |
43 | Liu H, Liu C, Shao D, et al. A tough Janus hydrogel patch with strong wet adhesion and self-debonding for oral ulcer treatment[J]. Chem Mater, 2024, 36(10): 4976-4989. |
44 | Cui C, Mei L, Wang D, et al. A self-stabilized and water-responsive deliverable coenzyme-based polymer binary elastomer adhesive patch for treating oral ulcer[J]. Nat Commun, 2023, 14(1): 7707. |
45 | Ryu JH, Choi JS, Park E, et al. Chitosan oral patches inspired by mussel adhesion[J]. J Control Release, 2020, 317: 57-66. |
46 | Xing J, Ding Y, Zheng X, et al. Barnacle-Inspired ro-bust and aesthetic Janus patch with instinctive wet adhesive for oral ulcer treatment[J]. Chem Eng J, 2022, 444: 136580. |
47 | Bao BK, Zeng QM, Li K, et al. Rapid fabrication of phy-sically robust hydrogels[J]. Nat Mater, 2023, 22: 1253-1260. |
48 | Zaragoza J, Fukuoka S, Kraus M, et al. Exploring the role of nanoparticles in enhancing mechanical properties of hydrogel nanocomposites[J]. Nanomaterials, 2018, 8(11): 882. |
49 | Montazerian H, Davoodi E, Baidya A, et al. Bio-macromolecular design roadmap towards tough bioadhesives[J]. Chem Soc Rev, 2022, 51(21): 9127-9173. |
50 | Zhang X, Zhang R, Wu S, et al. Physically and chemically dual-crosslinked hydrogels with superior mechanical properties and self-healing behavior[J]. New J Chem, 2020, 44(23): 9903-9911. |
51 | Zhu J, Li Y, Xie W, et al. Low-swelling adhesive hydrogel with rapid hemostasis and potent anti-inflammatory capability for full-thickness oral mucosal defect repair[J]. ACS Appl Mater Interfaces, 2022, 14(48): 53575-53592. |
52 | Yuan Y, Shen S, Fan D. A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing: shape adaptability, injectable self-hea-ling property and enhanced adhesion[J]. Biomaterials, 2021, 276: 120838. |
53 | Wu J, Pan Z, Zhao ZY, et al. Anti-swelling, robust, and adhesive extracellular matrix-mimicking hydrogel used as intraoral dressing[J]. Adv Mater, 2022, 34(20): e22-00115. |
54 | Ankareddi I, Brazel CS. Synthesis and characterization of grafted thermosensitive hydrogels for heating activa-ted controlled release[J]. Int J Pharm, 2007, 36(2): 241-247. |
55 | Zhang Y, Zhu W, Wang B, et al. A novel microgel and associated post-fabrication encapsulation technique of proteins[J]. J Control Release, 2005, 105(3): 260-268. |
56 | Huang D, Sun M, Bu Y, et al. Microcapsule-embedded hydrogel patches for ultrasound responsive and enhan-ced transdermal delivery of diclofenac sodium[J]. J Mater Chem B, 2019, 7(14): 2330-2337. |
57 | Kass LE, Nguyen J. Nanocarrier-hydrogel composite delivery systems for precision drug release[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2022, 14(2): e1756. |
58 | Babaladimath G, Badalamoole V. Magnetic nanopar-ticles embedded in pectin-based hydrogel for the sustained release of diclofenac sodium[J]. Polym Int, 2018, 67: 983-992. |
59 | Chan AW, Neufeld RJ. Tuneable semi-synthetic network alginate for absorptive encapsulation and controlled release of protein therapeutics[J]. Biomaterials, 2010, 31(34): 9040-9047. |
60 | Zhang L, Ma Y, Zhao C, et al. Synthesis of pH-responsive hydrogel thin films grafted on PCL substrates for protein delivery[J]. J Mater Chem B, 2015, 3(39): 7673-7681. |
61 | Shohraty F, Najafi Moghadam P, Fareghi A, et al. Synthesis and characterization of new pH-sensitive hydrogels based on poly(glycidyl methacrylate-co-maleic anhydride)[J]. Adv Polym Technol, 2018, 37(1): 120-125. |
62 | Mahkam M, Poorgholy N, Vakhshouri L. Synthesis and characterization of novel pH-sensitive hydrogels contai-ning ibuprofen pendents for colon-specific drug delivery[J]. Macromol Res, 2009, 17(9): 709-713. |
63 | Zhang Y, Ding J, Sun D, et al. Thermogel-mediated sustained drug delivery for in situ malignancy chemotherapy[J]. Mater Sci Eng C Mater Biol Appl, 2015, 49: 262-268. |
64 | Bastiancich C, Danhier P, Préat V, et al. Anticancer drug-loaded hydrogels as drug delivery systems for the local treatment of glioblastoma[J]. J Control Release, 2016, 243: 29-42. |
65 | Burakowska E, Zimmerman SC, Haag R. Photoresponsive crosslinked hyperbranched polyglycerols as smart nanocarriers for guest binding and controlled release[J]. Small, 2009, 5(19): 2199-2204. |
66 | Rai P, Mallidi S, Zheng X, et al. Development and ap-plications of photo-triggered theranostic agents[J]. Adv Drug Deliv Rev, 2010, 62(11): 1094-124. |
67 | Mahinroosta M, Jomeh Farsangi Z, Allahverdi A, et al. Hydrogels as intelligent materials: a brief review of synthesis, properties and applications[J]. Mater Today Chem, 2018, 8: 42-55. |
68 | Kalafatovic D, Nobis M, Son J, et al. MMP-9 triggered self-assembly of doxorubicin nanofiber depots halts tumor growth[J]. Biomaterials, 2016, 98: 192-202. |
69 | 白靖琨, 盛成乐, 张宇, 等. 酶响应型肽水凝胶及应用研究进展[J]. 生物化学与生物物理进展, 2016, 43(11): 1048-1060. |
Bai JK, Sheng CL, Zhang Y, et al. Progress in enzyme responsive peptide hydrogel and its applications[J]. Prog Biochem Biophy, 2016, 43(11): 1048-1060. | |
70 | Chen D, Zhang G, Li R, et al. Biodegradable, hydrogen peroxide, and glutathione dual responsive nanoparticles for potential programmable paclitaxel release[J]. J Am Chem Soc, 2018, 140(24): 7373-7376. |
71 | Moriyama K, Minamihata K, Wakabayashi R, et al. Enzymatic preparation of a redox-responsive hydrogel for encapsulating and releasing living cells[J]. Chem Commun (Camb), 2014, 50(44): 5895-5898. |
72 | Qi W, Dong N, Wu L, et al. Promoting oral mucosal wound healing using a DCS-RuB2A2 hydrogel based on a photoreactive antibacterial and sustained release of BMSCs[J]. Bioact Mater, 2022, 23: 53-68. |
73 | Tan X, Liu S, Hu X, et al. Near-infrared-enhanced dual enzyme-mimicking Ag-TiO2-x@alginate microspheres with antibactericidal and oxygeneration abilities to treat periodontitis[J]. ACS Appl Mater Interfaces, 2023, 15(1): 391-406. |
74 | Qu X, Guo X, Zhu T, et al. Microneedle patches contai-ning mesoporous polydopamine nanoparticles loaded wi-th triamcinolone acetonide for the treatment of oral mucositis[J]. Front Bioeng Biotechnol, 2023, 11: 1203709. |
75 | Zhang Z, Zhang Q, Gao S, et al. Antibacterial, anti-inflammatory and wet-adhesive poly(ionic liquid)-based oral patch for the treatment of oral ulcers with bacterial infection[J]. Acta Biomater, 2023, 166: 254-265. |
76 | Wen X, Xi K, Tang Y, et al. Immunized microspheres engineered hydrogel membrane for reprogramming ma-crophage and mucosal repair[J]. Small, 2023, 19(15): e2207030. |
77 | Xu S, Hu B, Dong T, et al. Alleviate periodontitis and its comorbidity hypertension using a nanoparticle-embedded functional hydrogel system[J]. Adv Healthc Mater, 2023, 12(20): e2203337. |
78 | Bao X, Zhao J, Sun J, et al. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease[J]. ACS Nano, 2018, 12(9): 8882-8892. |
[1] | YANG Song1, CHENG Hui1, LI Xiurong2, WU Wei-qing3. Study of the mechanical properties of Co-Cr ceramic alloy after recasts [J]. West China Journal of Stomatology, 2011, 29(03): 249-252. |
[2] | YI Yuan-fu1, WANG Chen2, WEN Ning3, LIN Yong -zhao2, TIAN Jie -mo2. Structure and properties of colored dental tetragonal zirconia stabilized by yttrium ceramics [J]. West China Journal of Stomatology, 2009, 27(05): 473-478. |
[3] | WANG Guang-kui1, KANG Hong1, BAO Guang-jie1, LV Jin-jun2, GAO Fei2. Influence on Mechanical Properties and Microstructure of Nano-zirconia Toughened Alumina Ceramics with Nano-zirconia Content [J]. West China Journal of Stomatology, 2006, 24(05): 404-406. |
[4] | ZHANG Yu-mei1,GUOTian-wen1,SHEN Li-juan1,LI Zuo-chen2. Effect of Mold Temperature on Mechanical Properties of Ti-Zr Alloy Castings [J]. West China Journal of Stomatology, 2004, 22(06): 516-518. |
[5] | Han Xiaoli, Liao Yunmao, Chao Yonglie, et al . Properties of GI-ⅡGlass/Alumina Composite Infiltrated with GI-ⅡTinted Infiltration Glass [J]. West China Journal of Stomatology, 2002, 20(05): 364-366. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||