West China Journal of Stomatology ›› 2018, Vol. 36 ›› Issue (5): 544-551.doi: 10.7518/hxkq.2018.05.015
Previous Articles Next Articles
Guang-xue Cui1(),Xiaolei Gao2,Xinhua Liang2(
)
Received:
2018-04-20
Revised:
2018-07-24
Online:
2018-10-01
Published:
2018-10-18
Supported by:
CLC Number:
Guang-xue Cui,Xiaolei Gao,Xinhua Liang. Invasion and metastasis mechanism of human papillomavirus in head and neck squamous cell carcinomas[J]. West China Journal of Stomatology, 2018, 36(5): 544-551.
Add to citation manager EndNote|Ris|BibTeX
Tab 1
Genes mutation rates with recurrent somatic mutations in HPV-associated HNSCC
基因名称 | 突变发生率/% | |
---|---|---|
简称 | 全称 | |
pik3ca | 磷脂酰肌醇-3-激酶催化亚单位α基因(phosphatidylinosital-4,5-bisphosphate3-kinase, catalytic | 22~56 |
subunit alpha) | ||
traf3 | 肿瘤坏死因子受体相关因子3(tumor necrosis factor receptor-associated factor 3) | 22 |
tp63 | 肿瘤蛋白63(tumor protein p63) | 28 |
fgfr3 | 成纤维细胞生长因子受体3(fibroblast growth factor receptor 3) | 11~14 |
mll3 | 赖氨酸特异性甲基转移酶2C[lysine(K)-specific methyltransferase 2C] | 10 |
mll2 | 赖氨酸特异性甲基转移酶2B[lysine(K)-specific methyltransferase 2B] | 10 |
flg | 丝聚合蛋白(filaggrin) | 12 |
notch1 | notch 1 | 8~17 |
ddx3x | dead-box RNA解旋酶[DEAD (Asp-Glu-Ala-Asp) box helicase 3, X-linked] | 8 |
k-ras | kirsten rat sarcoma viral oncogene homolog | 6 |
cyld | 肿瘤抑制因子[cylindromatosis(turban tumor syndrome)] | 6 |
egfr | 表皮生长因子受体(epidermal growth factor receptor) | 6 |
pten | 编码与张力蛋白和辅助蛋白同源的磷酸酶和抑癌基因(phosphatase and tensin homolog) | 6 |
ddr2 | 盘状结构域受体(discoidin domain receptor 2) | 2~6 |
Tab 2
Cell biological effects induced by HPV E6 oncoproteins via interactions with cellular elements
E6相互作用元件 | 生物学效应 |
---|---|
具有PDZ结构域的蛋白 | 降解具有PDZ(PSD-95、DLG、ZO-1的3个蛋白质的缩写)结构域的蛋白,导致细胞结构和极性丧失 |
E6AP | 降解p53;激活人端粒酶催化亚单位(human telomerase reversetranscriptase,hTERT)转录,诱导细胞永生化 |
Bak、FADD、Procaspase 8 | 诱导经典蛋白质降解,抑制细胞凋亡 |
BRCA1 | 激活雌激素受体信号通路 |
Tyk2 | 抑制Tyk2活性,从而抑制干扰素(interferons,IFN)诱导的信号通路 |
CBP/p300 | 通过cAMP反应元件结合蛋白(CREB-binding protein,CBP)下调p53活性 |
NFX1-91 | 下调NFX1-91,激活hTERT |
c-Myc | 提高hTERT基因表达 |
Dvl2 | 稳定β-连环素(β-catenin)表达和Wnt信号通路的活性 |
Tab 3
Cell biological effects induced by HPV E7 oncoproteins via interactions with cellular elements
E7相互作用元件 | 生物学效应 |
---|---|
pRb family proteins | 破坏pRb-E2F复合体,启动E2F介导的转录机制 |
AP1 | 转录活化AP1 family |
Cyclin A/CDK2 | 调控细胞周期 |
Cyclin E/CDK2 | 通过与p107结果调控细胞周期 |
p21 | 灭活p21,调控CDK和增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)抑制剂的功能 |
MPP2 | 提高MPP2(MAGUK p55亚家族成员2)特异性转录活性 |
p600 | 有利于肿瘤细胞非贴壁依赖性生长及转变 |
Mi2 | 与组蛋白去乙酰化酶(histone deacetylase,HDAC)形成复合体,促进E2F介导的转录机制 |
IRF1 | 消除干扰素调节因子1(interferon regulation factor 1,IRF1)转录活性 |
p48 | 下调IFNα介导的信号转导 |
p27 | 阻碍p27抑制细胞周期功能,促进细胞侵袭性 |
PP2A | 抑制蛋白磷酸酶2A(protein phosphatase 2A,PP2A)催化活性 |
Tab 4
E6/E7 oncoprotein-mediated miRNAs expression in oral carcinoma/oropharyngeal carcinoma
HPV致癌蛋白 | miRNAs | |
---|---|---|
E6蛋白 | 上调 | miR-33、miR-34a、miR-363、miR-497 |
下调 | miR-125a、miR-126、miR-127-3p、miR-142-5p、miR-145、miR-155、miR-181a/b、miR-20b、miR-218、 | |
miR-221、miR-222、miR-24a、miR-29a、miR-379 | ||
E7蛋白 | 上调 | miR-15a、miR-20b、miR-224 |
下调 | miR-145、miR-21、miR-127-3p |
Tab 5
Growth factors that have been associated in the literature with tumor lymphangiogenesis, lymph node metastasis, and relevant prognosis in head and neck cancer
生长因子 | 家族成员或受体 | 与HNSCC及淋巴结转移相关性 |
---|---|---|
VEGF | VEGF-A | 与口腔癌、咽癌、喉癌T分期正相关 |
与口腔癌、咽癌淋巴结转移正相关 | ||
VEGF-C | 与口腔癌淋巴结转移正相关 | |
HNSCC细胞侵袭能力提高 | ||
VEGF-D | 与口腔癌淋巴结转移正相关 | |
血管生成素(angiopoietins,Ang) | Ang-1 | 诱导VEGF受体-3高表达,提高VEGF-C、VEGF-D诱导淋巴管 |
生成能力 | ||
与口腔癌淋巴结转移正相关 | ||
Ang-2 | 与口腔癌预后差有关 | |
胰岛素样生长因子(insulin-like growth factor,IGF) | IGF-1R | 原发口咽癌及鼻咽癌未分化癌中高表达,转移淋巴结中高表达 |
成纤维细胞生长因子(fibroblast growth factor,FGF) | FGF-2 | 诱导体外淋巴管生成,促进VEGF-C分泌 |
[1] |
Gillison ML, Koch WM, Capone RB , et al. Evidence for a causal association between human papillomavirus and a sub-set of head and neck cancers[J]. J Natl Cancer Inst, 2000,92(9):709-720.
doi: 10.1093/jnci/92.9.709 URL |
[2] |
Snijders PJ, Cromme FV, van den Brule AJ , et al. Preva-lence and expression of human papillomavirus in tonsillar carcinomas, indicating a possible viral etiology[J]. Int J Can-cer, 1992,51(6):845-850.
doi: 10.1002/(ISSN)1097-0215 URL |
[3] |
Bradford CR, Wolf GT, Carey TE , et al. Predictive markers for response to chemotherapy, organ preservation, and sur-vival in patients with advanced laryngeal carcinoma[J]. Oto-laryngol Head Neck Surg, 1999,121(5):534-538.
doi: 10.1016/S0194-5998(99)70052-5 URL |
[4] | Dayan S, Goldenberg J, Portugal L , et al. Nodal metastasis in squamous cell carcinoma: p 53 mutation status and mi-crovessel density[C]. Toronto: Elsevier Ireland Ltd, 1996: 203. |
[5] |
Hotz MA, Bosq J, Zbaeren P , et al. Spontaneous apoptosis and the expression of p53 and Bcl-2 family proteins in locally advanced head and neck cancer[J]. Arch Otolaryngol Head Neck Surg, 1999,125(4):417-422.
doi: 10.1001/archotol.125.4.417 URL |
[6] |
Venkatesan TK, Kuropkat C, Caldarelli DD , et al. Prognostic significance of p27 expression in carcinoma of the oral cavity and oropharynx[J]. Laryngoscope, 1999,109(8):1329-1333.
doi: 10.1097/00005537-199908000-00029 URL |
[7] |
Chang EH, Jang YJ, Hao Z , et al. Restoration of the G1 checkpoint and the apoptotic pathway mediated by wild-type p53 sensitizes squamous cell carcinoma of the head and neck to radiotherapy[J]. Arch Otolaryngol Head Neck Surg, 1997,123(5):507-512.
doi: 10.1001/archotol.1997.01900050055007 URL |
[8] |
Takata T, Kudo Y, Zhao M , et al. Reduced expression of p27 (Kip1) protein in relation to salivary adenoid cystic car-cinoma metastasis[J]. Cancer, 1999,86(6):928-935.
doi: 10.1002/(ISSN)1097-0142 URL |
[9] |
Benefield J, Petruzzelli GJ, Fowler S , et al. Regulation of the steps of angiogenesis by human head and neck squamous cell carcinomas[J]. Invasion Metastasis, 1996,16(6):291-301.
doi: 10.1016/S0360-3016(97)89881-1 URL pmid: 9371228 |
[10] | Benefield J, Meisinger J, Petruzzelli GJ , et al. Endothelial cell response to human head and neck squamous cell car-cinomas involves downregulation of protein phosphatases-1/2A, cytoskeletal depolymerization and increased motility[J]. Invasion Metastasis, 1997,17(4):210-220. |
[11] |
Petruzzelli GJ, Benefield J, Yong S . Mechanism of lymph node metastases: current concepts[J]. Otolaryngol Clin North Am, 1998,31(4):585-599.
doi: 10.1016/S0030-6665(05)70074-8 URL |
[12] |
Petruzzelli GJ, Benefield J, Taitz AD , et al. Heparin-binding growth factor(s) derived from head and neck squamous cell carcinomas induce endothelial cell proliferations[J]. Head Neck, 1997,19(7):576-582.
doi: 10.1002/(ISSN)1097-0347 URL |
[13] |
Sakamoto N, Iwahana M, Tanaka NG , et al. Inhibition of angiogenesis and tumor growth by a synthetic laminin pep-tide, CDPGYIGSR-NH2[J]. Cancer Res, 1991,51(3):903-906.
URL pmid: 1703042 |
[14] |
Taitz A, Petruzzelli GJ, Lozano Y , et al. Bi-directional sti-mulation of adherence to extracellular matrix components by human head and neck squamous carcinoma cells and endothelial cells[J]. Cancer Lett, 1995,96(2):253-260.
doi: 10.1016/0304-3835(95)03939-T URL |
[15] |
Killela PJ, Reitman ZJ, Jiao Y , et al. TERT promoter muta-tions occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal[J]. Proc Natl Acad Sci U S A, 2013,110(15):6021-6026.
doi: 10.1073/pnas.1303607110 URL |
[16] |
Vinothkumar V, Arunkumar G, Revathidevi S , et al. TERT promoter hot spot mutations are frequent in Indian cervical and oral squamous cell carcinomas[J]. Tumour Biol, 2016,37(6):7907-7913.
doi: 10.1007/s13277-015-4694-2 URL |
[17] | Qu Y, Dang S, Wu K , et al. TERT promoter mutations pre-dict worse survival in laryngeal cancer patients[J]. Int J Can-cer, 2014,135(4):1008-1010. |
[18] |
Sano D, Oridate N . The molecular mechanism of human papillomavirus-induced carcinogenesis in head and neck squamous cell carcinoma[J]. Int J Clin Oncol, 2016,21(5):819-826.
doi: 10.1007/s10147-016-1005-x URL |
[19] |
Rusan M, Li YY, Hammerman PS . Genomic landscape of human papillomavirus-associated cancers[J]. Clin Cancer Res, 2015,21(9):2009-2019.
doi: 10.1158/1078-0432.CCR-14-1101 URL pmid: 25779941 |
[20] |
Wallace NA, Galloway DA . Novel functions of the human papillomavirus E6 oncoproteins[J]. Annu Rev Virol, 2015,2(1):403-423.
doi: 10.1146/annurev-virology-100114-055021 URL pmid: 26958922 |
[21] |
Hui AB, Lin A, Xu W , et al. Potentially prognostic miRNAs in HPV-associated oropharyngeal carcinoma[J]. Clin Cancer Res, 2013,19(8):2154-2162.
doi: 10.1158/1078-0432.CCR-12-3572 URL pmid: 23459718 |
[22] |
Salazar C, Calvopiña D, Punyadeera C . miRNAs in human papilloma virus associated oral and oropharyngeal squamous cell carcinomas[J]. Expert Rev Mol Diagn, 2014,14(8):1033-1040.
doi: 10.1586/14737159.2014.960519 URL pmid: 25222489 |
[23] | Nohata N, Abba MC, Gutkind JS . Unraveling the oral can-cer lncRNAome: identification of novel lncRNAs associated with malignant progression and HPV infection[J]. Oral On-col, 2016,59:58-66. |
[24] |
Sun Z, Hu W, Xu J , et al. MicroRNA-34a regulates epithelial-mesenchymal transition and cancer stem cell phenotype of head and neck squamous cell carcinoma in vitro[J]. Int J Oncol, 2015,47(4):1339-1350.
doi: 10.3892/ijo.2015.3142 URL |
[25] |
Krupar R, Robold K, Gaag D , et al. Immunologic and meta-bolic characteristics of HPV-negative and HPV-positive head and neck squamous cell carcinomas are strikingly different[J]. Virchows Arch, 2014,465(3):299-312.
doi: 10.1007/s00428-014-1630-6 URL |
[26] | Jung YS, Najy AJ, Huang W , et al. HPV-associated diffe-rential regulation of tumor metabolism in oropharyngeal head and neck cancer[J]. Oncotarget, 2017,8(31):51530-51541. |
[27] | Umbreit C, Aderhold C, Faber A , et al. Imatinib-associated matrix metalloproteinase suppression in p16-positive squa-mous cell carcinoma compared to HPV-negative HNSCC cells in vitro[J]. Oncol Rep, 2014,32(2):668-676. |
[28] |
Hanns E, Job S, Coliat P , et al. Human papillomavirus-related tumours of the oropharynx display a lower tumour hypoxia signature[J]. Oral Oncol, 2015,51(9):848-856.
doi: 10.1016/j.oraloncology.2015.06.003 URL |
[29] |
Tezal M, Scannapieco FA, Wactawski-Wende J , et al. Local inflammation and human papillomavirus status of head and neck cancers[J]. Arch Otolaryngol Head Neck Surg, 2012,138(7):669-675.
doi: 10.1001/archoto.2012.873 URL pmid: 22710409 |
[30] |
Diniz MO, Sales NS, Silva JR , et al. Protection against HPV-16-associated tumors requires the activation of CD8+ effector memory T cells and the control of myeloid-derived suppressor cells[J]. Mol Cancer Ther, 2016,15(8):1920-1930.
doi: 10.1158/1535-7163.MCT-15-0742 URL |
[31] |
Sunthamala N, Pientong C, Ohno T , et al. HPV16 E2 protein promotes innate immunity by modulating immunosuppressive status[J]. Biochem Biophys Res Commun, 2014,446(4):977-982.
doi: 10.1016/j.bbrc.2014.03.042 URL pmid: 24657154 |
[32] | Poropatich K, Hernandez D, Fontanarosa J , et al. Peritumoral cuffing by T-cell tumor-infiltrating lymphocytes distinguishes HPV-related oropharyngeal squamous cell carcinoma from oral cavity squamous cell carcinoma[J]. J Oral Pathol Med, 2017,46(10):972-978. |
[33] |
Jung YS, Kato I, Kim HR . A novel function of HPV16-E6/E7 in epithelial-mesenchymal transition[J]. Biochem Bio-phys Res Commun, 2013,435(3):339-344.
doi: 10.1016/j.bbrc.2013.04.060 URL pmid: 23628416 |
[34] |
Cheng H, Fertig EJ, Ozawa H , et al. Decreased SMAD4 expression is associated with induction of epithelial-to-mesenchymal transition and cetuximab resistance in head and neck squamous cell carcinoma[J]. Cancer Biol Ther, 2015,16(8):1252-1258.
doi: 10.1080/15384047.2015.1056418 URL |
[35] |
Vlashi E, Chen AM, Boyrie S , et al. Radiation-induced dedifferentiation of head and neck cancer cells into cancer stem cells depends on human papillomavirus status[J]. Int J Radiat Oncol Biol Phys, 2016,94(5):1198-1206.
doi: 10.1016/j.ijrobp.2016.01.005 URL |
[36] |
Tang AL, Owen JH, Hauff SJ , et al. Head and neck cancer stem cells: the effect of HPV—an in vitro and mouse study[J]. Otolaryngol Head Neck Surg, 2013,149(2):252-260.
doi: 10.1007/978-3-319-21030-8_12 URL |
[37] |
Baruah P, Lee M, Wilson PO , et al. Impact of p16 status on pro- and anti-angiogenesis factors in head and neck cancers[J]. Br J Cancer, 2015,113(4):653-659.
doi: 10.1038/bjc.2015.251 URL pmid: 4647678 |
[38] | Karatzanis AD, Koudounarakis E, Papadakis I , et al. Mole-cular pathways of lymphangiogenesis and lymph node me-tastasis in head and neck cancer[J]. Eur Arch Otorhinolaryn-gol, 2012,269(3):731-737. |
[39] |
Liu X, Dakic A, Zhang Y , et al. HPV E6 protein interacts physically and functionally with the cellular telomerase com-plex[J]. Proc Natl Acad Sci U S A, 2009,106(44):18780-18785.
doi: 10.1073/pnas.0906357106 URL pmid: 19843693 |
[40] |
Ghittoni R, Accardi R, Hasan U , et al. The biological pro-perties of E6 and E7 oncoproteins from human papilloma-viruses[J]. Virus Genes, 2010,40(1):1-13.
doi: 10.1007/s11262-009-0412-8 URL pmid: 19838783 |
[41] |
Lavoie JN, L’Allemain G, Brunet A , et al. Cyclin D1 ex-pression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway[J]. J Biol Chem, 1996,271(34):20608-20616.
doi: 10.1074/jbc.271.34.20608 URL |
[42] |
Bulavin DV, Phillips C, Nannenga B , et al. Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16 (Ink4a)-p19 (Arf) pathway[J]. Nat Genet, 2004,36(4):343-350.
doi: 10.1038/ng1317 URL |
[43] |
Sosa MS, Parikh F, Maia AG , et al. NR2F1 controls tumour cell dormancy via SOX9- and RARβ-driven quiescence pro-grammes[J]. Nat Commun, 2015,6:6170.
doi: 10.1038/ncomms7170 URL pmid: 25636082 |
[44] |
Ang KK, Harris J, Wheeler R , et al. Human papillomavirus and survival of patients with oropharyngeal cancer[J]. N Engl J Med, 2010,363(1):24-35.
doi: 10.1111/j.1365-2214.2010.01145_7.x URL pmid: 20530316 |
[45] |
Rischin D, Young RJ, Fisher R , et al. Prognostic signifi-cance of p16INK4A and human papillomavirus in patients with oropharyngeal cancer treated on TROG 02.02 phase Ⅲ trial[J]. J Clin Oncol, 2010,28(27):4142-4148.
doi: 10.1200/JCO.2010.29.2904 URL |
[46] | Heusinkveld M, Goedemans R, Briet RJ , et al. Systemic and local human papillomavirus 16-specific T-cell immunity in patients with head and neck cancer[J]. Int J Cancer, 2012,131(2):E74-E85. |
[47] |
Turksma AW, Bontkes HJ, van den Heuvel H , et al. Effector memory T-cell frequencies in relation to tumour stage, loca-tion and HPV status in HNSCC patients[J]. Oral Dis, 2013,19(6):577-584.
doi: 10.1111/odi.2013.19.issue-6 URL |
[48] | Lassen P, Eriksen JG, Hamilton-Dutoit S , et al. HPV-asso-ciated p16-expression and response to hypoxic modification of radiotherapy in head and neck cancer[J]. Radiother Oncol, 2010,94(1):30-35. |
[49] |
Kimple RJ, Smith MA, Blitzer GC , et al. Enhanced radiation sensitivity in HPV-positive head and neck cancer[J]. Cancer Res, 2013,73(15):4791-4800.
doi: 10.1158/0008-5472.CAN-13-0587 URL pmid: 23749640 |
[1] | Yan Liu, Mingxin Cao, Jiashun Wu, Xiaolei Gao, Xinhua Liang. Analysis of the current status of research on human papillomavirus-associated head and neck cancers based on recent Chinese literature [J]. West China Journal of Stomatology, 2017, 35(3): 301-310. |
[2] | Guangxue Cui, Xiaolei Gao, Xinhua Liang. Role of human papillomavirus in head and neck squamous cell carcinomas [J]. West China Journal of Stomatology, 2017, 35(2): 187-191. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||