West China Journal of Stomatology ›› 2021, Vol. 39 ›› Issue (2): 129-135.doi: 10.7518/hxkq.2021.02.002
Niu Lina(), Jiao Kai, Fang Ming, Chen Jihua
Received:
2020-11-04
Revised:
2020-12-14
Online:
2021-04-01
Published:
2021-04-09
Contact:
Niu Lina
E-mail:niulina831013@126.com
Supported by:
CLC Number:
Niu Lina, Jiao Kai, Fang Ming, Chen Jihua. Application of biomimetic restoration in oral-maxillofacial hard tissue repair[J]. West China Journal of Stomatology, 2021, 39(2): 129-135.
Tab 1
Remineralization of enamel
仿生策略 | 文献 | 修复材料 | 研究环境 | 研究结果 |
---|---|---|---|---|
模拟NCP的 作用 | Chen等[ | PAMAM-磷酸 | 体外+大鼠口内 | 可诱导脱矿釉质形成新生HAP |
Chen等[ | PAMAM-羧基 | 体外 | 可模拟组装出类似釉原蛋白的结构 | |
Fan等[ | PAMAM-氨基,PAMAM-羧基, PAMAM-羟基 | 体外 | PAMAM可促进深层脱矿釉质再矿化 | |
Kind等[ | P11-4 | 体外 | 可促进釉质病变深层的再矿化,其作用方式与釉质自然形成过程相似 | |
Alkilzy等[ | P11-4,氟化钠 | 体外 | P11-4对釉质的再矿化效果优于氟化钠 | |
Welk等[ | P11-4 | 临床试验 | 可修复釉质白垩色斑 | |
稳定并输送 矿物或矿物 前体 | Gargouri等[ | CPP-ACP | 体外 | 添加CPP-ACP的口香糖可促进脱矿釉质再矿化 |
Ma等[ | CPP-ACP | 体外+临床试验 | 可促进釉质白垩色斑的恢复,有助于诱导脱矿釉质再矿化并恢复其力学性能 | |
Shao等[ | 钙磷离子团簇 | 体外 | 修复后的釉质与天然釉质具有相同的层次结构和力学性能 |
Tab 2
Remineralization of dentin
仿生策略 | 文献 | 修复材料 | 研究环境 | 研究结果 |
---|---|---|---|---|
稳定并输送 矿物或矿物 前体 | Niu等[ | ACP | 体外 | 混有ACP的粘接剂具有再矿化作用且粘接性能无明显改变 |
Luo等[ | 介孔硅加载ACP | 体外 | 可诱导脱矿牙本质再矿化,解决ACP难以输送的问题 | |
Yu等[ | 介孔硅加载 纳米HAP | 体外 | 可有效地阻断牙本质小管,抗酸稳定性好,且不影响牙本质与自腐蚀粘接剂系统之间的即时粘结强度 | |
模拟NCP的 作用 | Xie等[ | PAMAM | 体外 | 可促进脱矿牙本质再矿化,并提高其显微硬度 |
Bacino等[ | 聚天冬氨酸 | 体外 | 可诱导矿化前体,修复脱矿牙本质的结构和力学性能 | |
Gulseren等[ | 牙本质磷蛋白模拟肽 | 体外 | 可诱导牙本质再矿化 |
Tab 3
Biomimetic restoration of bone defect
仿生策略 | 参考文献 | 修复材料 | 研究环境 | 研究结果 |
---|---|---|---|---|
结构仿生 | Sun等[ | 硅化胶原支架 | 体外+大鼠骨缺损模型 | 硅化支架可通过单核细胞免疫调节促进原位骨再生和血管生成 |
Niu等[ | 杂化胶原支架 | 体外 | 该修复材料具有良好的机械性能 | |
Yao等[ | 磷酸钙聚合物诱导的液体前体 | 体外+小鼠骨质疏松模型 | 可对形状不规则的骨缺损区域进行修复 | |
Song等[ | 聚丙烯酸交联胶原 | 体外+小鼠颅骨缺损模型 | 可诱导在体内自矿化,解决聚电解质在体内引入困难的问题 | |
功能仿生 | Zhang等[ | 双壳微小RNA纳米微球+纳米纤维聚合物支架 | 体外+骨质疏松小鼠临界骨缺损模型 | 解决了在组织工程中实现基于无细胞支架的微小RNA治疗的再生医学的关键挑战 |
Liu等[ | 可注射生物活性因子纳米微球 | 体外+小鼠牙周炎模型 | 可通过原位免疫调节促进骨修复 | |
Zhang等[ | 磁控生长因子负载支架 | 体外 | 提高生长因子的传递效率 | |
Liu等[ | 加载基质细胞来源因子的无细胞组织工程骨支架 | 体外+小鼠颅骨缺损模型 | 可增强间充质干细胞的归巢与迁移,加速血管化,促进骨形成 | |
Yu等[ | 磷酸三钙加载骨形成蛋白 | 体外+犬下颌骨缺损模型 | 促进血管化及骨形成 |
1 | Oryan A, Alidadi S, Moshiri A, et al. Bone regenerative medicine: classic options, novel strategies, and future directions[J]. J Orthop Surg Res, 2014, 9(1): 18. |
2 | Wegst UG, Bai H, Saiz E, et al. Bioinspired structural materials[J]. Nat Mater, 2015, 14(1): 23-36. |
3 | 崔福斋. 生物矿化[M]. 北京: 清华大学出版社, 2007. |
Cui FZ. Biomineralization[M]. Beijing: Tsinghua University Press, 2007. | |
4 | Sharma V, Srinivasan A, Nikolajeff F, et al. Biomineralization process in hard tissues: the interaction complexity within protein and inorganic counterparts[J]. Acta Biomater, 2021, 120: 20-37. |
5 | Zhang J, Wang J, Ma CW, et al. Hydroxyapatite formation coexists with amyloid-like self-assembly of human amelogenin[J]. Int J Mol Sci, 2020, 21(8): E2946. |
6 | Chen L, Yuan H, Tang B, et al. Biomimetic remineralization of human enamel in the presence of polyamidoamine dendrimers in vitro[J]. Caries Res, 2015, 49(3): 282-290. |
7 | Üstün N, Aktören O. Analysis of efficacy of the self-assembling peptide-based remineralization agent on artificial enamel lesions[J]. Microsc Res Tech, 2019, 82(7): 1065-1072. |
8 | Alkilzy M, Tarabaih A, Santamaria RM, et al. Self-assembling peptide P11-4 and fluoride for regenerating ena-mel[J]. J Dent Res, 2018, 97(2): 148-154. |
9 | Welk A, Ratzmann A, Reich M, et al. Effect of self-assembling peptide P11-4 on orthodontic treatment-induced carious lesions[J]. Sci Rep, 2020, 10(1): 6819. |
10 | Kind L, Stevanovic S, Wuttig S, et al. Biomimetic remineralization of carious lesions by self-assembling peptide[J]. J Dent Res, 2017, 96(7): 790-797. |
11 | Chen M, Yang JJ, Li JY, et al. Modulated regeneration of acid-etched human tooth enamel by a functionalized dendrimer that is an analog of amelogenin[J]. Acta Biomater, 2014, 10(10): 4437-4446. |
12 | Fan ML, Zhang M, Xu HK, et al. Remineralization effectiveness of the PAMAM dendrimer with different terminal groups on artificial initial enamel caries in vitro[J]. Dent Mater, 2020, 36(2): 210-220. |
13 | Philip N. State of the art enamel remineralization systems: the next frontier in caries management[J]. Caries Res, 2019, 53(3): 284-295. |
14 | Arifa MK, Ephraim R, Rajamani T. Recent advances in dental hard tissue remineralization: a review of literature[J]. Int J Clin Pediatr Dent, 2019, 12(2): 139-144. |
15 | Ma XL, Lin XD, Zhong TF, et al. Evaluation of the efficacy of casein phosphopeptide-amorphous calcium phosphate on remineralization of white spot lesions in vitro and clinical research: a systematic review and Meta-analysis[J]. BMC Oral Health, 2019, 19(1): 295. |
16 | Gargouri W, Zmantar T, Kammoun R, et al. Coupling xylitol with remineralizing agents improves tooth protection against demineralization but reduces antibiofilm effect[J]. Microb Pathog, 2018, 123: 177-182. |
17 | Shao CY, Jin B, Mu Z, et al. Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial g-rowth[J]. Sci Adv, 2019, 5(8): eaaw9569. |
18 | Niu LN, Zhang W, Pashley DH, et al. Biomimetic remineralization of dentin[J]. Dent Mater, 2014, 30(1): 77-96. |
19 | Gulseren G, Tansik G, Garifullin R, et al. Dentin phosphoprotein mimetic peptide nanofibers promote biomineralization[J]. Macromol Biosci, 2019, 19(1): e1800080. |
20 | Liu Y, Zhang L, Niu LN, et al. Antibacterial and remineralizing orthodontic adhesive containing quaternary ammonium resin monomer and amorphous calcium phosphate nanoparticles[J]. J Dent, 2018, 72: 53-63. |
21 | Luo XJ, Yang HY, Niu LN, et al. Translation of a solution-based biomineralization concept into a carrier-based delivery system via the use of expanded-pore mesoporous silica[J]. Acta Biomater, 2016, 31: 378-387. |
22 | Yu J, Yang HY, Li K, et al. A novel application of nanohydroxyapatite/mesoporous silica biocomposite on treating dentin hypersensitivity: an in vitro study[J]. J Dent, 2016, 50: 21-29. |
23 | Xie FF, Wei XL, Li QR, et al. In vivo analyses of the effects of polyamidoamine dendrimer on dentin biomineralization and dentinal tubules occlusion[J]. Dent Mater J, 2016, 35(1): 104-111. |
24 | Bacino M, Girn V, Nurrohman H, et al. Integrating the PILP-mineralization process into a restorative dental treat-ment[J]. Dent Mater, 2019, 35(1): 53-63. |
25 | Wei S, Ma JX, Xu L, et al. Biodegradable materials for bone defect repair[J]. Mil Med Res, 2020, 7(1): 54. |
26 | Hu Y, Zhu YJ, Zhou X, et al. Bioabsorbable cellulose composites prepared by an improved mineral-binding process for bone defect repair[J]. J Mater Chem B, 2016, 4(7): 1235-1246. |
27 | Sun JL, Jiao K, Song Q, et al. Intrafibrillar silicified collagen scaffold promotes in situ bone regeneration by activating the monocyte p38 signaling pathway[J]. Acta Biomater, 2018, 67: 354-365. |
28 | Sun JL, Jiao K, Niu LN, et al. Intrafibrillar silicified collagen scaffold modulates monocyte to promote cell homing, angiogenesis and bone regeneration[J]. Biomaterials, 2017, 113: 203-216. |
29 | Niu LN, Jiao K, Ryou H, et al. Multiphase intrafibrillar mineralization of collagen[J]. Angew Chem Int Ed Engl, 2013, 52(22): 5762-5766. |
30 | Yao SS, Lin XF, Xu YF, et al. Osteoporotic bone recovery by a highly bone-inductive calcium phosphate polymer-induced liquid-precursor[J]. Adv Sci (Weinh), 2019, 6(19): 1900683. |
31 | Song Q, Jiao K, Tonggu L, et al. Contribution of biomimetic collagen-ligand interaction to intrafibrillar mineralization[J]. Sci Adv, 2019, 5(3): eaav9075. |
32 | Zhang XJ, Li Y, Chen YE, et al. Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate cri-tical-sized bone defects[J]. Nat Commun, 2016, 7: 10376. |
33 | Liu ZN, Chen X, Zhang ZP, et al. Nanofibrous spongy microspheres to distinctly release miRNA and growth factors to enrich regulatory T cells and rescue periodontal bone loss[J]. ACS Nano, 2018, 12(10): 9785-9799. |
34 | Zhang WJ, Yang GZ, Wang XS, et al. Magnetically controlled growth-factor-immobilized multilayer cell sheets for complex tissue regeneration[J]. Adv Mater, 2017, 29(43): 1703795. |
35 | Lin SH, Yang GZ, Jiang F, et al. A magnesium-enriched 3D culture system that mimics the bone development microenvironment for vascularized bone regeneration[J]. Adv Sci (Weinh), 2019, 6(12): 1900209. |
36 | Liu YS, Ou MG, Liu H, et al. The effect of simvastatin on chemotactic capability of SDF-1α and the promotion of bone regeneration[J]. Biomaterials, 2014, 35(15): 4489-4498. |
37 | Zhang WJ, Wang XL, Wang SY, et al. The use of injectable sonication-induced silk hydrogel for VEGF(165) and BMP-2 delivery for elevation of the maxillary sinus floor[J]. Biomaterials, 2011, 32(35): 9415-9424. |
38 | Yu T, Liu Q, Jiang T, et al. Channeled β-TCP scaffolds promoted vascularization and bone augmentation in mandible of Beagle dogs[J]. Adv Funct Mater, 2016, 26: 6719-6727. |
39 | Nair MA, Shaik KV, Kokkiligadda A, et al. Tissue-engineered maxillofacial skeletal defect reconstruction by 3D printed beta-tricalcium phosphate scaffold tethered with growth factors and fibrin glue implanted autologous bone marrow-derived mesenchymal stem cells[J]. J Med Life, 2020, 13(3): 418-425. |
[1] | Xia Kai, Sun Wentian, Yu Liyuan, Liu Jun. Influence of different types of rapid maxillary expansion on root resorption: a systematic review [J]. West China Journal of Stomatology, 2021, 39(1): 38-47. |
[2] | Zheng Xiaofei, Mo Anchun, Zhu Juanfang, Wang Suping, Du Yajing, Yao Yongzhi. Effect of anatomical parameters of maxillary sinus on the outcomes of transcrestal sinus lift [J]. West China Journal of Stomatology, 2020, 38(6): 652-656. |
[3] | Zhong Ningying, Wang Liping. Research progress in the osteogenetic mechanism of strontium [J]. West China Journal of Stomatology, 2020, 38(6): 697-703. |
[4] | Hu Shuang, Li Chunmei, Zhang Shuaiyuan, Qin Shuo, Xie Chenlu, Niu Zhixing, Sun Minglei. Clinical value of oral repair membrane and β-tricalcium phosphate in the treatment of the postoperative bone defect of jaw cyst [J]. West China Journal of Stomatology, 2020, 38(5): 541-545. |
[5] | Jiang Yixuan, Gong Ping, Zhang Liang. A review of mechanisms by which low-intensity pulsed ultrasound affects bone regeneration [J]. West China Journal of Stomatology, 2020, 38(5): 571-575. |
[6] | Xie Xudong, Zhao Lei, Wu Yafei, Wang Jun. Role of bone morphogenetic protein 1/tolloid proteinase family in the development of teeth and bone [J]. West China Journal of Stomatology, 2020, 38(5): 589-593. |
[7] | Yuan Jie, Guo Qianqian, Li Qi, Sui Yanjun, Jiang Baoqi. Relationships among the periodontal biotype characteristics in the maxillary anterior [J]. West China Journal of Stomatology, 2020, 38(4): 398-403. |
[8] | Yu Danhua, Jia Lingling, Li Jiyao. Effects of various surface treatments on the bonding efficacy of noncarious cervical sclerotic lesions [J]. West China Journal of Stomatology, 2020, 38(4): 438-442. |
[9] | Liu Yixiu, Qu Yang, Li Zhenhua, Wang Hongpeng. Effect of decompression combined with curettage and autogenous bone cement implantation on large cysts of the jaw [J]. West China Journal of Stomatology, 2020, 38(4): 464-469. |
[10] | Liu Yiping, Wang Jue, Tian Zilu, Zhai Peisong, Wang Zhanqi, Zhou Yanmin, Ni Shilei. Effects of scaffold microstructure and mechanical properties on regeneration of tubular dentin [J]. West China Journal of Stomatology, 2020, 38(3): 314-318. |
[11] | Wu Xiangnan, Ma Yuanyuan, Hao Zhichao, Wang Hang. Research progress on the biological regulatory function of lysophosphatidic acid in bone tissue cells [J]. West China Journal of Stomatology, 2020, 38(3): 324-329. |
[12] | Liu Shibo, Liu Xian. Review for different sources of exosomes in bone tissue engineering research [J]. West China Journal of Stomatology, 2020, 38(2): 193-197. |
[13] | Shi Hui,Ge Hongshan,Chen Luyi,Li Zhihua. Meta-analysis of the efficacy of bone anchorage and maxillary facemask protraction devices in treating skeletal class Ⅲ malocclusion in adolescents [J]. West China Journal of Stomatology, 2020, 38(1): 69-74. |
[14] | Xu Yamei,Huang Hong,Wang Li,Wu Qingqing,Fu Gang,Li Jiao. Comparison of clinical effects of a modified socket shield technique and the conventional immediate implant placement [J]. West China Journal of Stomatology, 2019, 37(5): 490-495. |
[15] | Shu Meng,Yilan Lin,Lei Zhao,Yi Xu. Relationship of orthodontic treatment and periodontal hard tissue health [J]. West China Journal of Stomatology, 2019, 37(4): 343-349. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||