West China Journal of Stomatology ›› 2021, Vol. 39 ›› Issue (5): 576-581.doi: 10.7518/hxkq.2021.05.013

Previous Articles    

An investigation of the microstructure and mechanical properties of dental zirconia manufactured by digital light processing 3D printing

Mei Ziyu(), Lu Yuqing, Lou Yuxin, Zhang Junjing, Sun Manlin, Yu Haiyang.()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2020-07-18 Revised:2021-06-20 Online:2021-10-01 Published:2021-10-11
  • Contact: Yu Haiyang. E-mail:1085427833@qq.com;yhyang6812@scu.edu.cn
  • Supported by:
    Key Research and Development Project of Sichuan Science and Technology Plan(2020YFS0040);Correspondence: Yu Haiyang, E-mail: yhyang6812@scu.edu.cn

Abstract: Objective

This study was performed to investigate the microstructure and mechanical properties of dental zirconia manufactured by digital light processing (DLP) 3D printing and the clinical application prospects of this material.

Methods

The experiment (DLP) group was zirconia manufactured by DLP 3D printing, and the control (MILL) group was milled zirconia. The density, grain size, and phase composition were measured to study the microstructure. Flexural strength was measured by using three-point bending tests, while Vickers hardness was determined through a Vickers hardness tester. Fracture toughness was tested using the single-edge V-notched beam method.

Results

Zirconia density of the DLP group was (6.019 8±0.021 3) g·cm-3, and the average grain size was (0.603 0±0.032 6) μm, but without statistical difference with the corresponding values of the MILL group (P>0.05). Tetragonal phase was found in the X-ray diffraction patterns of the DLP and MILL groups. The flexural strength of the DLP group was (1 012.7±125.5) MPa, and Vickers hardness was (1 238.5±10.8) HV1, which was slightly lower than that of the MILL group (P<0.05). The fracture toughness of the DLP group was (7.22±0.81) MPa·m1/2, which was not statistically different from that of the MILL group (P>0.05).

Conclusion

Zirconia manufactured by DLP 3D printing had microstructure and mechanical properties similar to those of the milled zirconia. Only the flexural strength and the Vickers hardness of the experimental zirconia were slightly lower than those of the milled zirconia. Therefore, DLP-manufactured zirconia has a promising future for clinical use.

Key words: digital light processing, zirconia, microstructure, flexural strength, Vickers hardness, fracture toughness

CLC Number: