West China Journal of Stomatology ›› 2020, Vol. 38 ›› Issue (6): 697-703.doi: 10.7518/hxkq.2020.06.016
Previous Articles Next Articles
Zhong Ningying1,2(), Wang Liping1()
Received:
2019-03-18
Revised:
2020-08-10
Online:
2020-12-01
Published:
2020-12-07
Contact:
Wang Liping
E-mail:769777769@qq.com;wangliplj@126.com
CLC Number:
Zhong Ningying, Wang Liping. Research progress in the osteogenetic mechanism of strontium[J]. West China Journal of Stomatology, 2020, 38(6): 697-703.
Add to citation manager EndNote|Ris|BibTeX
[1] | 马家晴, 于萌, 张海松. 锶对骨矿代谢的研究进展[J]. 医学研究与教育, 2015,32(2):82-86. |
Ma JQ, Yu M, Zhang HS. Progress of Strontium on bone mineral metabolism[J]. Med Res Educ, 2015,32(2):82-86. | |
[2] |
Dahl SG, Allain P, Marie PJ, et al. Incorporation and distribution of strontium in bone[J]. Bone, 2001,28(4):446-453.
doi: 10.1016/S8756-3282(01)00419-7 URL |
[3] |
Wu Y, Adeeb SM, Duke MJ, et al. Compositional and material properties of rat bone after bisphosphonate and/or Strontium ranelate drug treatment[J]. J Pharm Pharm Sci, 2013,16(1):52-64.
URL pmid: 23683605 |
[4] | 胡细连, 谢海宝. 雷尼酸锶治疗骨质疏松症的研究进展[J]. 中国骨质疏松杂志, 2006,12(5):515-517, 495. |
Hu XL, Xie HB. Research progress of strontium ranelate in the treatment of osteoporosis[J]. Chin J Osteoporos, 2006,12(5):515-517, 495. | |
[5] |
Piette M, Desmet B, Dams R. Determination of strontium in human whole blood by ICP-AES[J]. Sci Total Environ, 1994,141(1/2/3):269-273.
doi: 10.1016/0048-9697(94)90033-7 URL |
[6] |
Krachler M, Wirnsberger G, Irgolic KJ. Trace element status of hemodialyzed patients[J]. Biol Trace Elem Res, 1997,58(3):209-221.
URL pmid: 9403133 |
[7] | 陈兵, 赵婷婷, 王海萍, 等. 血液透析患者外周血铅、镉、锶、铝水平研究[J]. 中华肾脏病杂志, 2013,29(2):152-153. |
Chen B, Zhao TT, Wang HP, et al. Study on the levels of lead, cadmium, strontium and aluminum in peripheral blood of hemodialysis patients[J]. Chin J Nephrol, 2013,29(2):152-153. | |
[8] |
Brennan TC, Rybchyn MS, Green W, et al. Osteoblasts play key roles in the mechanisms of action of strontium ranelate[J]. Br J Pharmacol, 2009,157(7):1291-1300.
doi: 10.1111/j.1476-5381.2009.00305.x URL pmid: 19563530 |
[9] | 唐炬, 张震祥, 李洪伟. 锶离子二氧化钛涂层对成骨细胞的黏附作用[J]. 江苏医药, 2017,43(15):1066-1071. |
Tang J, Zhang ZX, Li HW. Adhesion effect of Sr-incorporated TiO2 coating on osteoblast-like cells[J]. Jiangsu Med J, 2017,43(15):1066-1071. | |
[10] |
Barbara A, Delannoy P, Denis BG, et al. Normal matrix mineralization induced by strontium ranelate in MC3T3-E1 osteogenic cells[J]. Metabolism, 2004,53(4):532-537.
doi: 10.1016/j.metabol.2003.10.022 URL |
[11] |
Bonnelye E, Chabadel A, Saltel F, et al. Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro[J]. Bone, 2008,42(1):129-138.
doi: 10.1016/j.bone.2007.08.043 URL |
[12] |
Almeida MM, Nani EP, Teixeira LN, et al. Strontium ranelate increases osteoblast activity[J]. Tissue Cell, 2016,48(3):183-188.
doi: 10.1016/j.tice.2016.03.009 URL pmid: 27157549 |
[13] |
Liu J, Rawlinson SC, Hill RG, et al. Strontium-substituted bioactive glasses in vitro osteogenic and antibacterial effects[J]. Dent Mater, 2016,32(3):412-422.
doi: 10.1016/j.dental.2015.12.013 URL pmid: 26777094 |
[14] |
Singh SS, Roy A, Lee B, et al. Murine osteoblastic and osteoclastic differentiation on strontium releasing hydroxyapatite forming cements[J]. Mater Sci Eng C Mater Biol Appl, 2016,63:429-438.
doi: 10.1016/j.msec.2016.02.059 URL pmid: 27040237 |
[15] | 李忠海, 韩丽伟, 赵彦涛, 等. 不同浓度锶对MC3T3-E1细胞增殖、ALP活性及成骨分化的影响[J]. 中国骨与关节杂志, 2016,5(3):221-225. |
Li ZH, Han LW, Zhao YT, et al. Effects of strontium on the proliferation, ALP activity and the differentiation of MC3T3 cells[J]. Chin J Bone Joint, 2016,5(3):221-225. | |
[16] |
Marie PJ. Strontium ranelate in osteoporosis and beyond: identifying molecular targets in bone cell biology[J]. Mol Interv, 2010,10(5):305-312.
URL pmid: 21045244 |
[17] |
Persson P, Takagi Y, Björnsson BT. Tartrate resistant acid phosphatase as a marker for scale resorption in rainbow trout, oncorhynchus mykiss: effects of estradiol-17β treatment and refeeding[J]. Fish Physiol Biochem, 1995,14(4):329-339.
doi: 10.1007/BF00004071 URL pmid: 24197501 |
[18] |
Sorbera LA, Castañer J, Leeson PA, et al. Strontium ranelate[J]. Drug Future, 2003,28(4):328-330.
doi: 10.1358/dof.2003.028.04.726503 URL |
[19] |
Caudrillier A, Hurtel-Lemaire AS, Wattel A, et al. Strontium ranelate decreases receptor activator of nuclear factor-ΚB ligand-induced osteoclastic differentiation in vitro: involvement of the calcium-sensing receptor[J]. Mol Pharmacol, 2010,78(4):569-576.
doi: 10.1124/mol.109.063347 URL pmid: 20584969 |
[20] |
Sell S. Stem cell origin of cancer and differentiation therapy[J]. Crit Rev Oncol Hematol, 2004,51(1):1-28.
doi: 10.1016/j.critrevonc.2004.04.007 URL pmid: 15207251 |
[21] |
Akune T, Ohba S, Kamekura S, et al. PPARγ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors[J]. J Clin Invest, 2004,113(6):846-855.
URL pmid: 15067317 |
[22] |
Fournier C, Perrier A, Thomas M, et al. Reduction by strontium of the bone marrow adiposity in mice and repression of the adipogenic commitment of multipotent C3H10T1/2 cells[J]. Bone, 2012,50(2):499-509.
URL pmid: 21839191 |
[23] |
Li Y, Li J, Zhu S, et al. Effects of strontium on proliferation and differentiation of rat bone marrow mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2012,418(4):725-730.
URL pmid: 22306818 |
[24] |
Aimaiti A, Maimaitiyiming A, Boyong X, et al. Low-dose strontium stimulates osteogenesis but high-dose doses cause apoptosis in human adipose-derived stem cells via regulation of the ERK1/2 signaling pathway[J]. Stem Cell Res Ther, 2017,8(1):282.
doi: 10.1186/s13287-017-0726-8 URL pmid: 29254499 |
[25] |
Zhang W, Cao H, Zhang X, et al. A strontium-incorporated nanoporous titanium implant surface for rapid osseointegration[J]. Nanoscale, 2016,8(9):5291-5301.
doi: 10.1039/c5nr08580b URL pmid: 26881868 |
[26] | 张文, 黄德球, 郭周义, 等. 掺锶生物活性玻璃通过调控巨噬细胞极化促进成骨[J]. 激光生物学报, 2018,27(3):232-239. |
Zhang W, Huang DQ, Guo ZY, et al. Enhanced osteogenesis of strontium-substituted bioactive glasses through regulation of macrophage polarization[J]. Acta Laser Biol Sin, 2018,27(3):232-239. | |
[27] | 李相仕, 王金龙, 尹玉姬, 等. 组织工程相关生物材料与巨噬细胞相互作用研究进展[J]. 生物医学工程学杂志, 2008,25(2):487-490. |
Li XS, Wang JL, Yin YJ, et al. Advances in interaction of macrophages with tissue engineering related biomaterials[J]. J Biomed Eng, 2008,25(2):487-490. | |
[28] |
Zhang W, Zhao F, Huang D, et al. Strontium-substituted submicrometer bioactive glasses modulate macrophage responses for improved bone regeneration[J]. ACS Appl Mater Interfaces, 2016,8(45):30747-30758.
URL pmid: 27779382 |
[29] |
Zhu S, Hu X, Tao Y, et al. Strontium inhibits titanium particle-induced osteoclast activation and chronic inflammation via suppression of NF-κB pathway[J]. Sci Rep, 2016,6:36251.
doi: 10.1038/srep36251 URL pmid: 27796351 |
[30] |
Su WT, Chou WL, Chou CM. Osteoblastic differentiation of stem cells from human exfoliated deciduous teeth induced by thermosensitive hydrogels with strontium phosphate[J]. Mater Sci Eng C Mater Biol Appl, 2015,52:46-53.
doi: 10.1016/j.msec.2015.03.025 URL pmid: 25953539 |
[31] |
Huang M, Hill RG, Rawlinson SC. Strontium (Sr) elicits odontogenic differentiation of human dental pulp stem cells (hDPSCs): a therapeutic role for Sr in dentine repair[J]. Acta Biomater, 2016,38:201-211.
doi: 10.1016/j.actbio.2016.04.037 URL pmid: 27131573 |
[32] |
Bao X, Liu X, Zhang Y, et al. Strontium promotes cementoblasts differentiation through inhibiting sclerostin expression in vitro[J]. Biomed Res Int, 2014,2014:487535.
doi: 10.1155/2014/487535 URL pmid: 25003114 |
[33] |
Qin H, Yang Z, Li L, et al. A promising scaffold with excellent cytocompatibility and pro-angiogenesis action for dental tissue engineering: strontium-doped calcium polyphosphate[J]. Dent Mater J, 2016,35(2):241-249.
doi: 10.4012/dmj.2015-272 URL pmid: 27041014 |
[34] | 元宇, 郭健民, 邹军. OPG/RANKL/RANK信号通路在运动与骨免疫学中的研究进展[J]. 中国骨质疏松杂志, 2015,21(8):1005-1010. |
Yuan Y, Guo JM, Zou J. Research progress of OPG/RANKL/RANK signal pathway in exercise and osteoimmunology[J]. Chin J Osteopor, 2015,21(8):1005-1010. | |
[35] |
Ominsky MS, Li X, Asuncion FJ, et al. RANKL inhibition with osteoprotegerin increases bone strength by improving cortical and trabecular bone architecture in ovariectomized rats[J]. J Bone Miner Res, 2008,23(5):672-682.
doi: 10.1359/jbmr.080109 URL pmid: 18433301 |
[36] |
Atkins GJ, Welldon KJ, Halbout P, et al. Strontium ranelate treatment of human primary osteoblasts promotes an osteocyte-like phenotype while eliciting an osteoprotegerin response[J]. Osteoporos Int, 2009,20(4):653-664.
doi: 10.1007/s00198-008-0728-6 URL pmid: 18763010 |
[37] |
Peng S, Liu XS, Huang S, et al. The cross-talk between osteoclasts and osteoblasts in response to strontium treatment: involvement of osteoprotegerin[J]. Bone, 2011,49(6):1290-1298.
doi: 10.1016/j.bone.2011.08.031 URL pmid: 21925296 |
[38] |
Stuss M, Sewerynek E, Król I, et al. Assessment of OPG, RANKL, bone turnover markers serum levels and BMD after treatment with strontium ranelate and ibandronate in patients with postmenopausal osteoporosis[J]. Endokrynol Pol, 2016,67(2):174-184.
URL pmid: 26884284 |
[39] | James AW. Review of signaling pathways governing MSC osteogenic and adipogenic differentiation[J]. Scientifica (Cairo), 2013,2013:684736. |
[40] |
Rybchyn MS, Slater M, Conigrave AD, et al. An Akt-dependent increase in canonical Wnt signaling and a decrease in sclerostin protein levels are involved in strontium ranelate-induced osteogenic effects in human osteoblasts[J]. J Biol Chem, 2011,286(27):23771-23779.
doi: 10.1074/jbc.M111.251116 URL pmid: 21566129 |
[41] |
Saidak Z, Marie PJ. Strontium signaling: molecular mechanisms and therapeutic implications in osteoporosis[J]. Pharmacol Ther, 2012,136(2):216-226.
doi: 10.1016/j.pharmthera.2012.07.009 URL pmid: 22820094 |
[42] | 李蕾, 雷云坤, 孟增东. 锶的成骨效应及其在骨科中应用的研究进展[J]. 中国修复重建外科杂志, 2012,26(11):1398-1402. |
Li L, Lei YK, Meng ZD. Progress of osteogenic effect of strontium and its application in orthopaedics[J]. Chin J Reparat Reconstr Surg, 2012,26(11):1398-1402. | |
[43] |
Fromigué O, Haÿ E, Barbara A, et al. Calcium sensing receptor-dependent and receptor-independent activation of osteoblast replication and survival by strontium ranelate[J]. J Cell Mol Med, 2009,13(8B):2189-2199.
doi: 10.1111/j.1582-4934.2009.00673.x URL pmid: 20141614 |
[44] | 袁向飞, 陆敏. Ras/MAPK与PI3K/Akt信号转导通路及其相互作用[J]. 国际检验医学杂志, 2006,27(3):261-263. |
Yuan XF, Lu M. Ras/MAPK and PI3K/Akt signal transduction pathways and their interaction[J]. Int J Lab Med, 2006,27(3):261-263. | |
[45] |
Peng S, Zhou G, Luk KD, et al. Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway[J]. Cell Physiol Biochem, 2009,23(1/2/3):165-174.
doi: 10.1159/000204105 URL |
[46] |
Okita N, Honda Y, Kishimoto N, et al. Supplementation of strontium to a chondrogenic medium promotes chondrogenic differentiation of human dedifferentiated fat cells[J]. Tissue Eng Part A, 2015,21(9/10):1695-1704.
doi: 10.1089/ten.tea.2014.0282 URL |
[47] | 王仁峰. microRNA-21参与锶促细胞成骨分化及外泌体提取方法改良[D]. 天津: 天津医科大学, 2016. |
Wang RF. microRNA-21 is involved in the strontium induced osteogenic differentiation of cells and improvement of exosome extraction[D]. Tianjin: Tianjin Medical University, 2016. | |
[48] |
Fernández JM, Molinuevo MS, Sedlinsky C, et al. Strontium ranelate prevents the deleterious action of advanced glycation endproducts on osteoblastic cells via calcium channel activation[J]. Eur J Pharmacol, 2013,706(1/2/3):41-47.
doi: 10.1016/j.ejphar.2013.02.042 URL |
[49] |
Jia X, Long Q, Miron RJ, et al. Setd2 is associated with strontium-induced bone regeneration[J]. Acta Biomater, 2017,53:495-505.
doi: 10.1016/j.actbio.2017.02.025 URL pmid: 28219807 |
[50] | 陈兵, 易斌, 鲁开智. Smad蛋白家族调控细胞分化的研究进展[J]. 医学研究生学报, 2013,26(5):544-547. |
Chen B, Yi B, Lu KZ. Advances in researches on Smad proteins in cell differentiation[J]. J Med Postgra, 2013,26(5):544-547. | |
[51] | 吕辉珍, 黄晓丹, 靳思思, 等. 雷奈酸锶通过骨形态发生蛋白-2/Smad通路促进骨髓间充质干细胞成骨分化[J]. 南方医科大学学报, 2013,33(3):376-381. |
Lü HZ, Huang XD, Jin SS, et al. Strontium ranelate promotes osteogenic differentiation of rat bone mesenchymal stem cells through bone morphogenetic protein-2/Smad signaling pathway[J]. J South Med Univ, 2013,33(3):376-381. | |
[52] | 李正, 王瑒, 王小娜, 等. 骨形态发生蛋白-7在雷奈酸锶促进骨髓间充质干细胞成骨分化过程中的作用[J]. 南方医科大学学报, 2011,31(11):1949-1953. |
Li Z, Wang Y, Wang XN, et al. Strontium ranelate promotes osteogenic differentiation of rat bone marrow mesenchymal stem cells by increasing bone morphogenetic protein-7 expression[J]. J South Med Univ, 2011,31(11):1949-1953. | |
[53] |
Zhang W, Tian Y, He H, et al. Strontium attenuates rhBMP-2-induced osteogenic differentiation via formation of Sr-rhBMP-2 complex and suppression of Smad-dependent signaling pathway[J]. Acta Biomater, 2016,33:290-300.
doi: 10.1016/j.actbio.2016.01.042 URL pmid: 26828127 |
[54] |
Pan A, Chang L, Nguyen A, et al. A review of hedgehog signaling in cranial bone development[J]. Front Physiol, 2013,4:61.
doi: 10.3389/fphys.2013.00061 URL pmid: 23565096 |
[55] | 胡洁芬, 廖静秋, 张伟杰, 等. Hedgehog/Gli1通路在雷奈酸锶促进骨髓间充质干细胞成骨分化过程中的作用[J]. 中国病理生理杂志, 2015,31(2):234-238. |
Hu JF, Liao JQ, Zhang WJ, et al. Strontium ranelate promotes osteogenic differentiation of rat bone mesenchymal stem cells through Hedgehog/Gli1 signaling pathway[J]. Chin J Pathophysiol, 2015,31(2):234-238. | |
[56] |
Caverzasio J, Thouverey C. Activation of FGF receptors is a new mechanism by which strontium ranelate induces osteoblastic cell growth[J]. Cell Physiol Biochem, 2011,27(3/4):243-250.
doi: 10.1159/000327950 URL |
[57] |
Kim JH, Kim N. Regulation of NFATc1 in osteoclast differentiation[J]. J Bone Metab, 2014,21(4):233-241.
doi: 10.11005/jbm.2014.21.4.233 URL pmid: 25489571 |
[58] |
Saidak Z, Haÿ E, Marty C, et al. Strontium ranelate rebalances bone marrow adipogenesis and osteoblastogenesis in senescent osteopenic mice through NFATc/Maf and Wnt signaling[J]. Aging Cell, 2012,11(3):467-474.
doi: 10.1111/j.1474-9726.2012.00804.x URL pmid: 22321691 |
[59] |
Fromigué O, Haÿ E, Barbara A, et al. Essential role of nuclear factor of activated T cells (NFAT)-mediated Wnt signaling in osteoblast differentiation induced by strontium ranelate[J]. J Biol Chem, 2010,285(33):25251-25258.
doi: 10.1074/jbc.M110.110502 URL pmid: 20554534 |
[60] |
Choudhary S, Halbout P, Alander C, et al. Strontium ranelate promotes osteoblastic differentiation and mineralization of murine bone marrow stromal cells: involvement of prostaglandins[J]. J Bone Miner Res, 2007,22(7):1002-1010.
URL pmid: 17371157 |
[61] |
Tan S, Zhang B, Zhu X, et al. Deregulation of bone forming cells in bone diseases and anabolic effects of strontium-containing agents and biomaterials[J]. Biomed Res Int, 2014,2014:814057.
doi: 10.1155/2014/814057 URL pmid: 24800251 |
[62] |
Gulhan I, Bilgili S, Gunaydin R, et al. The effect of strontium ranelate on serum insulin like growth factor-1 and leptin levels in osteoporotic post-menopausal women: a prospective study[J]. Arch Gynecol Obstet, 2008,278(5):437-441.
doi: 10.1007/s00404-008-0611-x URL |
[63] |
de Melo Nunes R, Martins MR, da Silva Junior FS, et al. Strontium ranelate analgesia in arthritis models is associated to decreased cytokine release and opioid-dependent mechanisms[J]. Inflamm Res, 2015,64(10):781-787.
doi: 10.1007/s00011-015-0860-7 URL pmid: 26245235 |
[1] | Kong Chao, Wang Xuxia, Wang Qianqian, Han Yuanyuan, Zhao Shuya, Zhang Jun. Effects of strontium ranelate on the rats’ palatal suture after rapid maxillary expansion [J]. West China Journal of Stomatology, 2016, 34(4): 336-340. |
[2] | Shu Linjing, Wu Yingying, Tan Zhen, Gong Ping. Research progress on forkhead box protein O1 and bone metabolism [J]. West China Journal of Stomatology, 2016, 34(4): 429-432. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||