华西口腔医学杂志

• 专栏论著 • 上一篇    下一篇

眶部种植体长度对骨界面应力影响的三维有限元研究

张兴1 陈松龄2 张云3 齐刘英1   

  1. 1.广东省中医院口腔科,广州 510120;2.中山大学附属第一医院口腔科,广州 510080;3.台州市第一人民医院消化内科,台州 318020
  • 出版日期:2014-10-01 发布日期:2014-10-01
  • 通讯作者: 陈松龄,教授,博士,E-mail:chensongling@hotmail.com
  • 作者简介:张兴,副主任医师,博士,E-mail:zhangxing2698@163.com
  • 基金资助:

    广东省科技厅社会发展基金资助项目(2010B060900070);国家自然科学基金面上项目资助项目(81371111)

Three-dimensional finite element analysis of the effect of orbital implant lengths on stress distributions in peri-implant surfaces

Zhang Xing1, Chen Songling2, Zhang Yun3, Qi Liuying1.   

  1. 1. Dept. of Stomatology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China; 2. Dept. of Stomatology, The First Affiliated Hospital, Sun Yatsen University, Guangzhou 510080, China; 3. Dept. of Gastroenterology, The First People’s Hospital in Taizhou, Taizhou 318020, China
  • Online:2014-10-01 Published:2014-10-01

摘要:

目的 探讨不同长度的眶部种植体对骨界面应力分布的影响。方法 建立直径3.75 mm,长度分别为3、4、6、10 mm的眶部种植体—颅颌面骨三维有限元模型,分别给予沿种植体轴向和与轴向成45°的载荷,载荷大小20 N,记录两种方向载荷下种植体及骨界面的Von-Mises应力峰值和位移峰值,分析其应力分布。结果 施加沿种植体轴向载荷时,种植体周围应力集中于根部,种植体受力大于骨面;施加与轴向成45°载荷时,应力集中于种植体颈部与第一螺纹之间,种植体受力大于骨面。施加两个方向的载荷时,3 mm种植体的应力峰值明显大于其他长度种植体,而位移峰值无明显变化。在相同长度下,施加沿种植体轴向载荷时的应力峰值及位移峰值均明显低于与轴向成45°载荷时,载荷方式对界面应力分布有明显的影响。结论 临床上尽量选择4 mm以上的眶部种植体;应用3 mm种植体时,应选择骨密质较厚的区域植入。

关键词: 眶部种植体, 应力分布, 三维有限元, 种植体长度

Abstract:

Objective This study aims to observe the effect of orbital implant lengths on stress distribution in peri-implant surfaces. Methods The three-dimensional finite element analysis models of craniofacial and orbital implants with a diameter of 3.75 mm and lengths of 3, 4, 6, and 10 mm were established. A force of 20 N was applied to the models. The stress and displacement distribution under every condition were recorded and analyzed. Results The loading direction along the implant axis and the stress concentration on the implant root were observed. The loading direction was at a 45 degree angle relative to the implant axis, and the stress concentration was located at the implant neck and the first screw thread. The maximum stress of the 3 mm implant was significantly higher than that under the other two loading directions. The maximum displacement of the four lengths exhibited no significant change. Given the same implant length, stress, and displacement, the peak of the implant axial direction was lower than that of the 45 degree direction. The loading type was an important factor influencing the stress and displacement of peri-implant bones. Conclusion The implants of more than 4 mm length can be considered for clinical use. The implant of 3 mm length should be implanted in a region with thicker cortical bone.

Key words: orbital implant, stress distribution, three-dimensional finite element, implant length