华西口腔医学杂志

• 专栏论著 • 上一篇    下一篇

流体切应力下不同形貌钛表面成骨细胞的扫描电镜观察

李文慧1,2 杨晓喻3 鲜苏琴1   

  1. 1.口腔疾病研究国家重点实验室, 四川大学;2.核工业416医院口腔科, 四川成都610041; 3.广东省口腔医院种植科, 广东广州510280
  • 收稿日期:2010-12-25 修回日期:2010-12-25 出版日期:2010-12-20 发布日期:2010-12-20
  • 通讯作者: 鲜苏琴,Tel:028-85502141
  • 作者简介:李文慧(1983—),女,湖北人,硕士
  • 基金资助:

    国家自然科学基金资助项目(30500569);广东省医学科研究基金资助项目(A2010094和A2010090)

Observation on osteoblasts responded to fluid induced shear cultured on different surfaces with scanning electron microscope

LI Wen-hui1,2, YANG Xiao-yu3, XIAN Su-qin1   

  1. 1. State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China; 2. Dept. of Stomatology, 416 Hospital of Nuclear Industry, Chengdu 610041, China; 3. Dept. of Implantology, Stomatology Hospital of Guangdong Province, Guangzhou 510280, China
  • Received:2010-12-25 Revised:2010-12-25 Online:2010-12-20 Published:2010-12-20
  • Contact: XIAN Su-qin,Tel:028-85502141

摘要:

目的研究流体切应力下不同钛表面成骨细胞的形态变化规律。方法采用不同处理方法将纯钛钛片分为机械打磨(PT)组、喷砂(SB)组、喷砂—酸碱(SB-AB)组,在各组钛片表面培养成骨细胞,施以14 dynes·cm-2的流体切应力,扫描电镜下观察0.5、4、7.5 h时各组钛片表面成骨细胞的形态变化。结果切应力作用0.5 h,各组细胞形态均未发生明显变化。作用7.5 h,各组细胞大量脱落,很少有可见的细胞。作用4 h,各组成骨细胞形态发生明显变化,PT组细胞不同程度的被拉长并沿流体方向排列,SB-AB组细胞由悬空生长的长梭形变为伸出很多细小突触附着在二级孔隙中的多角形,紧密贴附于钛表面。SB组与SB-AB组类似,但部分细胞还表现出顺流体方向被拉长同时伸出细长的突触附着于孔洞边缘隆起处。结论在适当生理切应力的作用下,细胞的形态变化与切应力作用时间和材料表面形貌关系密切。

关键词: 流体切应力, 表面形貌, 成骨细胞

Abstract:

Objective To investigate morphological change of osteoblasts cultured on titanium plates with different microarchitecture structure when exposured to fluid shear stress. Methods 14 dynes·cm-2 fluid shear stress was applied on osteoblasts cultured on 3 different commercially pure titanium plates: Polished treatment(PT), sandblast (SB), sandblasting and acid-base(SB-AB) surfaces. Scanning electron microscope(SEM) was adopted to observe the morphological changes after 0.5, 4, 7.5 h time point respectively. Results Morphologically, no significant changes were observed after 0.5 h and few osteoblasts were seen after 7.5 h on all 3 type of different surfaces, and significant changes could only be observed after 4 h. Osteoblasts were elongated and rearranged along the flow way on different levels on PT surface. Shape of cells was altered, from long fusiform suspending over depressed areas into polygon stretching out many synapsises tightly attachedto pits on SB-AB surface. Osteoblasts on SB surface displayed similar change as SB-AB surface, besides, some cells were elongated along the way of flow, stretching out threadlike synapsises attached to edges of pits. Conclusion Morphological change of osteoblast responding to fluid shear stress in physiological range depends on substrate microarchitecture and varies with the time of fluid shear stress application.

Key words: fluid shear stress, microarchitecture, osteoblasts